<table>
<thead>
<tr>
<th>Page No.</th>
<th>Department</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Department of Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>Bachelor of Engineering (B.E.) in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>Minor in Environmental Science</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>Master of Science (M.S.) in Civil and Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>Department of Electrical & Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>Bachelor of Engineering (B.E.) in Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td>Bachelor of Engineering (B.E.) in Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>Master of Science (M.S.) in Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>Department of Industrial & Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>Bachelor of Engineering (B.E.) in Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>Bachelor of Engineering (B.E.) in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>Packaging Minor (PM)</td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Master of Science (M.S.) in Industrial Engineering and Engineering Management</td>
<td></td>
</tr>
</tbody>
</table>
The School of Engineering at the Lebanese American University promotes five important core values:

1. Integrity: To deal honestly and fairly with the public and one another, and to be transparent in our dealing with the public and one another;
2. Commitment: To be committed to our students and to our school, and to conscientiously strive for excellence in our work;
3. Responsibility: To be accountable for our actions toward ourselves, others and the community, and to be accountable for our performance and committed to shared governance;
4. Respect: To value one’s self and others and to respect the rights and dignity of others;
5. Courage: To face difficult situations with confidence and determination, and to promote intellectual freedom and stand up for one’s convictions.

PROGRAMS/DEGREES AVAILABLE
The School of Engineering offers Bachelor of Engineering (B.E.) degrees in:
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Industrial Engineering
- Mechanical Engineering

Minors in: Packaging, Environmental Sciences

The School of Engineering offers Master of Science (M.S.) degrees in:
- Civil and Environmental Engineering
- Computer Engineering
- Industrial Engineering and Engineering Management

MISSION
To educate students, to provide them with abilities for success in their lives as engineers and as responsible citizens, and to graduate them with distinctive skills that are sought after in the professional world and by graduate schools.

DEAN
George E. Nasr, Ph.D.

ASSOCIATE DEAN
Samer Saab, Ph.D.

ASSISTANT DEAN
Barbar Akle, Ph.D.

CHAIRS
Jean Chatila, Ph.D.
Michel Khoury, Ph.D.
Zahi Nakad, Ph.D.

FACULTY
Grace Abou Jaoude, Ph.D.
Chadi Abou-Rjeily, Ph.D.
Caesar Abi Shdid, Ph.D.
Barbar Akle, Ph.D.
Ihab Ali, Ph.D.
Jean Paul Arnaout, Ph.D.
Rita Awwad, Ph.D.
Elie Badr, Ph.D.
Jean Chatila, Ph.D.
Wissam Fawaz, Ph.D.
Raymond Ghajar, Ph.D.
Wassim Habchi, Ph.D.
Marc Haddad, Ph.D.
Ramy Harik, Ph.D.
Camille Issa, Ph.D.
Jimmy Issa, Ph.D.
Gebran Karam, Ph.D.
John Khoury, Ph.D.
Michel Khoury, Ph.D.
Charbel Mansour, Ph.D.
Zahi Nakad, Ph.D.
George Nasr, Ph.D.
Iyad Ouaiss, Ph.D.
Samer Saab, Ph.D.
Abdallah Sfeir, Ph.D.
Mazen Tabbara, Ph.D.
Dani Tannir, Ph.D.
Joe Tekli, Ph.D.
Mahmoud Wazne, Ph.D.
Pierrette Zouein, Ph.D.
VISION
To advance a distinctive and innovative environment for engineering education.

ACCREDITATION
The Bachelor of Engineering degree programs listed above are accredited by the Engineering Accreditation Commission of ABET, the recognized accreditor of college and university programs in applied science, computing, engineering, and engineering technology. ABET accreditation demonstrates a program’s commitment to providing its students with a quality education.

Accreditation is a voluntary, peer-review process that requires programs to undergo comprehensive, periodic evaluations. The evaluations, conducted by teams of volunteer professionals working in industry, government, academe, and private practice within the ABET disciplines, focus on program curricula, faculty, facilities, institutional support, and other important areas.

One of the key elements of ABET accreditation is the requirement that programs continuously improve the quality of education provided. As part of this continuous improvement requirement, programs set specific, measurable goals for their students and graduates, assess their success at reaching those goals, and improve their programs based on the results of their assessment.

In addition to providing colleges and universities a structured mechanism to assess, evaluate, and improve their programs, accreditation also helps students and their parents choose quality college programs, enables employers and graduate schools to recruit graduates they know are well-prepared, and assists registration, licensure, and certification boards in screening applicants.

ABET is a not-for-profit organization, owned and operated by its more than 30 professional and technical member societies. An internationally respected organization with more than 2,000 volunteers, ABET has set the higher educational standards in its fields for nearly 80 years. More information about ABET, its member societies, and the evaluation criteria used to accredit programs can be found at www.abet.org.

Department of Civil Engineering

The Bachelor of Engineering degree program in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET (www.abet.org).

The Department of Civil Engineering at LAU provides a well-rounded quality and challenging engineering education that graduates dynamic and creative engineers. The program draws upon the broad resources of the comprehensive university that aspires to be among the top universities in the country and the region.

DEGREES AVAILABLE:
- Bachelor of Engineering (B.E.) in Civil Engineering
- Master of Science (M.S.) in Civil and Environmental Engineering
Bachelor of Engineering (B.E.) in Civil Engineering

The Department of Civil Engineering is committed to providing students with a solid theoretical background, training in the latest design methods and proficiency in technological applications. Our graduates go on to pursue varied careers in design, construction, management and research.

The Department of Civil Engineering currently offers courses in the fields of:

- Construction engineering
- Environmental engineering
- Geotechnical engineering
- Surveying
- Structural engineering
- Transportation engineering
- Water resources engineering

MISSION

The mission of the Department of Civil Engineering at LAU is to provide students with a quality and challenging education, through innovative teaching, professional practice and community service, enabling the students to enrich their lives and make valuable contributions to their communities.

VISION

To prepare our graduates to be technically competent, talented, creative, and ethically responsible engineers who are effective professionals in today’s work environment. We keep them abreast of the latest technical software. This enables them to enrich their lives and make valuable contributions to their communities.

GOALS OF CURRICULUM

Program Educational Objectives

Within a few years of graduation, the graduates of the Civil Engineering program will:

1. Achieve success in their chosen career path, be it professional practice or graduate studies;
2. Adapt to meet the changing requirements of the job market;
3. Be responsible citizen engineers.

Student Outcomes

The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:

1. An ability to apply knowledge of mathematics, science, and engineering;
2. An ability to design and conduct experiments, as well as to analyze and interpret data;
3. An ability to design a system, component, or process, to meet the desired needs, within realistic constraints, such as economic environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
4. An ability to function on multidisciplinary teams;
5. An ability to identify, to formulate, and to solve engineering problems;
6. An understanding of one’s professional and ethical responsibility;
7. An ability to communicate effectively;
8. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and social context;
9. A Recognition of the need and the ability to engage in lifelong learning;
10. A Knowledge of contemporary issues;
11. An ability to use the techniques, the skills, and the modern engineering
tools that are necessary for the engineering practice.

GRADUATION REQUIREMENTS

The total number of credits required for graduation is 150. This includes six
technical elective courses, and seven courses with a separate industry standard
software laboratory. Elective courses allow students to choose the emphasis,
depending on their own interests and current market needs. Software courses
enhance the learning experience and improve the marketability of our gradu-
ates. A typical schedule over a four-year period, including summer modules, is
listed hereafter. Students may elect to take these courses over a longer period of
time.

STUDY PLAN

This is a recommended plan of study over a four-year period.

YEAR I (40 CREDITS)

Fall Semester (17 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH201</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>CHM201</td>
<td>Chemical Principles</td>
<td>3</td>
</tr>
<tr>
<td>CIE200</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>COE212</td>
<td>Engineering Programming</td>
<td>3</td>
</tr>
<tr>
<td>COE201</td>
<td>Computer Proficiency</td>
<td>1</td>
</tr>
<tr>
<td>MEE 211</td>
<td>Engineering Graphics</td>
<td>1</td>
</tr>
<tr>
<td>ENG202</td>
<td>Sophomore Rhetoric</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (17 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA 2-3</td>
<td>Arabic Language/Literature</td>
<td>3</td>
</tr>
<tr>
<td>HLT 201</td>
<td>Basic Health</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR II (42 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE308</td>
<td>Construction Materials</td>
<td>3</td>
</tr>
<tr>
<td>CIE309</td>
<td>Construction Materials–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE302</td>
<td>Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CIE303</td>
<td>Structural Analysis - SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIE321</td>
<td>Fluid Mechanics–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE304</td>
<td>Stress Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIE305</td>
<td>Stress Analysis–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE361</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CIE362</td>
<td>Surveying - LAB</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer Module I (3 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (3 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

YEAR III (42 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE306</td>
<td>Concrete Structures I</td>
<td>3</td>
</tr>
<tr>
<td>CIE307</td>
<td>Concrete Structures I–SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE322</td>
<td>Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CIE323</td>
<td>Hydraulics–SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE304</td>
<td>Stress Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIE305</td>
<td>Stress Analysis–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE361</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CIE362</td>
<td>Surveying - LAB</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester (15 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE308</td>
<td>Construction Materials</td>
<td>3</td>
</tr>
<tr>
<td>CIE309</td>
<td>Construction Materials–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE302</td>
<td>Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>CIE303</td>
<td>Structural Analysis - SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE320</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIE321</td>
<td>Fluid Mechanics–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE304</td>
<td>Stress Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIE305</td>
<td>Stress Analysis–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE361</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CIE362</td>
<td>Surveying - LAB</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR IV (42 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE306</td>
<td>Concrete Structures I</td>
<td>3</td>
</tr>
<tr>
<td>CIE307</td>
<td>Concrete Structures I–SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE322</td>
<td>Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>CIE323</td>
<td>Hydraulics–SOFT</td>
<td>1</td>
</tr>
<tr>
<td>CIE304</td>
<td>Stress Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CIE305</td>
<td>Stress Analysis–LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIE361</td>
<td>Surveying</td>
<td>2</td>
</tr>
<tr>
<td>CIE362</td>
<td>Surveying - LAB</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer Module I (3 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (3 credits)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Summer Module I (6 credits)
- **GNE 331** Probability and Statistics 3
- **GNE 301** Professional Communication 2
- **PED2** Physical Education 1

Summer Module II (6 credits)
- **INE320** Engineering Economy I 3

YEAR III (37 CREDITS)

Fall Semester (16 credits)
- **CIE444** Soil Mechanics 3
- **CIE445** Soil Mechanics – LAB 1
- **CIE424** Water Distribution & Treatment 3
- **CIE425** Environmental Engineering – LAB 1
- **CIE460** Highway Engineering 3
- **CIE461** Transportation Engineering – SOFT 1
- **CIE480** Civil Eng. Management Fundamentals 3
- **GNE305** Professional Ethics 1

Spring Semester (15 credits)
- **CIE446** Foundation Engineering 3
- **CIE447** Geotechnical Engineering – SOFT 1
- **CIE465** Transportation Systems Engineering 3
- **CIE485** Construction Management 3
- **CIE486** Construction Management – SOFT 1

YEAR IV (31 CREDITS)

Fall Semester (16 credits)
- **CIE601** Project I 3
- **CIE436** Detailing for Civil Engineers 2
- **CIE434** The Civil Engineering Profession 2
- **CIE** Technical Elective 3
- **CIE** Technical Elective 3
- **CIE** Technical Elective 3

Spring Semester (15 credits)
- **CIE400** Steel Structures 3
- **CIE434** The Civil Engineering Profession 2
- **CIE** Technical Elective 3
- **CIE** Technical Elective 3
- **CIE** Technical Elective 3

TECHNICAL ELECTIVES
- **CIE510** Finite Element Method I 3
- **CIE512** Concrete Structures II 3
- **CIE520** Solid Waste Management 3
- **CIE521** Hydrology 3
- **CIE522** Environmental Impact Assessment 3
- **CIE525** Environmental Policy and Management 3
- **CIE526** Environmental Remediation 3
- **CIE563** Transportation Planning and Land Use 3
- **CIE564** Mass Transit Systems 3
- **CIE582** Infrastructure Management 3
- **CIE584** Quality Management Systems 3
- **CIE585** Risk and Natural Hazard Management 3
- **CIE517** Earthquake Analysis of Structures 3
- **CIE540** Advanced Geotechnical Engineering 3
COURSE DESCRIPTIONS

CIE200 Statics [3-0, 3 cr.]
Review of vector algebra; force system resultants; equilibrium of a particle and rigid body; internal forces and applications to beams, trusses and frames; shear and moment diagrams for beams; centroid and moment of inertia.
Prerequisites: MTH102 and PHY111.

CIE202 Mechanics of Materials [3-0, 3 cr.]
Review of equilibrium principles; types of stress and linear stress-strain relationships; axial, shear, torsion, and bending deformations; shear force and bending moment diagrams; and deflection of beams by integration.
Prerequisites: CIE200 Statics.

CIE302 Structural Analysis I [3-0, 3 cr.]
Classification of statically determinate/indeterminate structures; deflections using the principle of virtual work; introduction to matrix algebra, analysis of statically indeterminate structures using Flexibility Method and Stiffness Method.
Prerequisites: CIE202 Mechanics of Materials.

CIE303 Structural Analysis I – SOFT [0-2, 1 cr.]
Structural analysis using commercial software; computational model for trusses and frames: load cases, supports, linear static analysis. Results visualizations and assessment: axial force, shear force and bending moment diagrams; deformed shapes.
Co-requisites: CIE302 Structural Analysis I.

CIE304 Stress Analysis [3-0, 3 cr.]
Stress-strain formulations in 1-D, 2-D, and 3-D; introduction to constitutive theories of materials and failure criteria for engineering materials; design and analysis of pressure vessels; elastic stability and simple buckling problems of columns, plates and shells; introduction to linear elastic fracture mechanics (LEFM) concepts and integrated design.
Prerequisites: CIE202 Mechanics of Materials.

CIE305 Stress Analysis – LAB [o-3, 1 cr.]
Laboratory demonstration of stress analysis concepts including: stress and strain measurements, failure of materials, elastic stability, and fracture mechanics.
Co-requisites: CIE304 Stress Analysis.

CIE306 Concrete Structures I [3-0, 3 cr.]
Analysis and design of reinforced concrete members according to ACI code including: beams, solid and ribbed one-way slabs, T-beams, doubly reinforced beams, short columns, including development length and splicing of reinforcing steel bars.
Prerequisites: CIE302 Structural Analysis I and CIE308 Construction Materials.

CIE307 Concrete Structures I – SOFT [0-2, 1 cr.]
Concrete design using commercial software according to established codes. Results visualization and assessment for beams, slabs, columns and footings: concrete section, reinforcement, development length, reinforcement layout.
Co-requisites: CIE306 Concrete Structures I.

CIE308 Construction Materials [3-0, 3 cr.]
Introduction to the geological origins of construction materials and the effects of geological processes. General considerations on the use of materials in construction, required properties, selection, testing, design, and quality control of civil engineering materials. Design and testing of ordinary Portland cement concrete, asphaltic concrete, masonry, steel, and wood construction; overview of composites and other materials in civil engineering.
Prerequisites: CIE202 Mechanics of Materials.
CIE309 Construction Materials – LAB [0-3, 1 cr.]
Laboratory demonstration of materials testing and evaluation methods with emphasis on aggregate, concrete, and steel reinforcement testing as per national and international standard methods and specifications.
Co-requisites: CIE308 Construction Materials.

CIE320 Fluid Mechanics [3-0, 3 cr.]
Properties of fluids; hydrostatics and kinematics; basic equations and conservation laws: mass, energy and momentum; Reynolds Transport Theorem; steady laminar and turbulent pipe flow; dimensional analysis and similitude, flow measurements.

CIE321 Fluid Mechanics – LAB [0-3, 1 cr.]
Laboratory applications in fluid mechanics including fluid measurements and properties; flow in pipes; Reynolds number; forces on gates; orifices; weirs; open channel flow; and pumps.
Co-requisites: CIE320 Fluid Mechanics.

CIE322 Hydraulics [3-0, 3 cr.]
Review of governing equations, design of municipal water supply and distribution systems, flow in pipes and flow regimes; methods of flow measurements; open channel flow with gradually varied flow computations; hydraulic machinery. Introduction to spillways, reservoir routing, well hydraulics and drawdown.
Prerequisites: CIE320 Fluid Mechanics.

CIE323 Hydraulics – SOFT [0-2, 1 cr.]
Analysis and design using commercially available software: municipal water distribution systems including pipes, reservoir, pumps and losses. Results visualizations and assessment: pressure, velocity, head losses.
Co-requisites: CIE322 Hydraulics.

CIE361 Surveying [2-0, 2 cr.]
Basic measuring procedures for distances, elevations, angles, bearings, azimuths; theory of measurements and errors, leveling, mapping; construction and topographic surveys, traverses, adjustment and closure, subdivision of Land; area and volumes computations, road surveys: coordinate systems, triangulation.
Prerequisites: MEE211 Engineering Graphics

CIE362 Surveying – LAB [0-3, 1 cr.]
Students will apply in the field concepts learned in class including basic measuring procedures for distances, elevations, angles, bearings, azimuths; theory of measurements and errors, leveling, mapping; construction and topographic surveys, traverses, adjustment and closure, area and volumes computations.
Co-requisites: CIE361 Surveying

CIE400 Steel Structures [3-0, 3 cr.]
Introduction to the AISC-LRFD design philosophy; discussion of the behavior, analysis and design of steel structures; design of tension members, simple bolted connections, introduction to welded connections, compression members, laterally supported beams, beams under torsion, and lateral torsional loading.
Prerequisites: CIE302 Structural Analysis I and CIE304 Stress Analysis.

CIE424 Water Distribution and Treatment [3-0, 3 cr.]
Physical, chemical and biological water quality parameters and standards; water quantity, population estimation and use factors; methods of distribution and design criteria and periods; stresses in pipes and pipe materials, distribution system relate appurtenances; water treatment techniques: purpose, sedimentation, thickening, coagulation/flocculation processes and basin design, filtration, disinfection.
Prerequisites: CIE322 Hydraulics.

CIE425 Environmental Engineering – LAB [0-3, 1 cr.]
Fundamental quantities, titration, standards, physical, chemical and biological water; wastewater characteristics; parameter determination using standard methods, data reduction, analysis and interpretation.
Prerequisites: CHM201 Chemical Principles.
Co-requisites: CIE424 Water Distribution and Treatment.
CIE426 Wastewater Collection and Treatment [3-o, 3 cr.]
Design of sanitary and storm sewers and related appurtenances, mass balances and hydraulic flow regimes; reaction order and rates, analysis of experimental data, attached and suspended growth biological wastewater treatment systems including: activated sludge and its variations, aerated lagoons, SBR, trickling filters, RBC; basic nitrification-denitrification processes; oxygen requirements; introduction to sludge treatment and disposal.
Prerequisites: CIE424 Water Distribution and Treatment.

CIE427 Environmental Engineering – SOFT [0-2, 1 cr.]
Analysis and design of wastewater treatment plants using commercially available software: sizing of tanks; and effluent concentration. Results visualizations and assessment.
Co-requisites: CIE426 Wastewater Collection and Treatment.

CIE434 The Civil Engineering Profession [2-o, 2 cr.]
Introduction to the history and heritage of civil engineering; specialized sub disciplines; professionalism and professional registration and societies; continuing education; impact of historical and contemporary issues on the identification, formulation, and solution of engineering problems, impact of engineering solutions on the economy, environment, political landscape, and society. The course involves teamwork researching topics related to the impact of contemporary engineering solutions.
Prerequisites: fifth year standing

CIE436 Detailing for Civil Engineers [0-2, 2 cr.]
An introduction to computer-aided drafting techniques and design drawings using a CAD program and sketching to generate two and three dimensional drawings based on the conventions of engineering graphical communication, applications to different Civil Engineering areas of specialty. A required team effort project introduces the preparation of working design drawings and consideration of production methods.
Pre-requisite MEE 211 Engineering Graphics and fifth year standing

CIE444 Soil Mechanics [3-o, 3 cr.]
Formation and types of soils, field testing and soil classification, permeability and seepage analysis in saturated soils, stresses in a soil mass, total and effective stress analysis, stress-strain relationships and strength properties of soils, failure criteria, and theory of consolidation.
Prerequisites: CIE202 Mechanics of Materials.

CIE445 Soil Mechanics – LAB [0-3, 1 cr.]
Laboratory testing for properties and characteristics of soils including: classification tests, soil compaction and relative density, hydraulic conductivity, shear strength tests, and consolidation test.
Co-requisites: CIE444 Soil Mechanics.

CIE446 Foundation Engineering [3-o, 3 cr.]
Analysis, design and construction aspects of foundations including: subsurface exploration and soil characterization; design of shallow foundations based on bearing capacity and settlement calculations; earth pressure theories and design of typical retaining structures; introduction to deep foundations design.
Prerequisites: CIE444 Soil Mechanics.

CIE447 Geotechnical Engineering – SOFT [0-2, 1 cr.]
Geotechnical analysis and design using commercial software including design of foundations and lateral earth retaining systems. Results visualizations and assessment.
Co-requisites: CIE446 Foundation Engineering.

CIE460 Highway Engineering [3-o, 3 cr.]
Planning, design, and operation of transportation systems. Theory and practice of the geometric design of streets and highways including horizontal and vertical curves, traffic flow modeling, analysis, control, and safety. Introduction to the design of intersections, and interchanges. Introduction to pavement design principles.
Prerequisites: CIE361 Surveying.
CIE461 Transportation Engineering – SOFT [0-2, 1 cr.]
Highway design using commercial software integrating planning, geometric design, traffic modeling and GIS systems. Results visualizations and assessment.
Co-requisites: CIE460 Highway Engineering.

CIE465 Transportation Systems Engineering [3-0, 3 cr.]
Road vehicle performance, analysis and design of infrastructure systems, components of highway systems; planning and design of freeway interchanges, highway capacity and quality of service using High Capacity Manual methodologies, fundamentals of traffic flow theory and queuing analysis, traffic control and analysis of intersections, travel demand and forecasting.
Prerequisites: CIE460 Highway Engineering.

CIE480 Civil Engineering Management Fundamentals [3-0, 3 cr.]
Organization and management theory, understanding of business fundamentals as applied in the private, government and non-profit sectors; public policy; public administration fundamentals with applications. Principles of leadership, government regulations and responsibilities of the different parties involved in public construction, bonds and insurance requirements, funding mechanisms, dispute resolution processes, professional ethics.
Prerequisites: INE320 Engineering Economy, Co-requisite GNE305 Professional Ethics, and senior year standing

CIE485 Construction Management [3-0, 3 cr.]
Construction contracting processes, development of the different phases of a construction project, quantity take-off and price estimating, proposal preparation; scheduling methods and networks, application of construction control tools such as: CPM, PERT, repetitive scheduling method; resource allocation and leveling, time-cost tradeoff; budgeting and cost control, and quality control.
Prerequisites: CIE480 Civil Engineering Management Fundamentals.

CIE486 Construction Management – SOFT [0-2, 1 cr.]
Use of commercial software for the operations, scheduling, planning, resource allocation, budgeting and control of construction projects.
Co-requisites: CIE485 Construction Management.

CIE498 Professional Experience [0-6, 6 cr.]
Professional experience through training in the execution of real-life engineering projects.
Prerequisites: fifth year standing and consent of instructor

CIE510 Finite Element Method I [3-0, 3 cr.]
Prerequisites: CIE202 Mechanics of Materials.

CIE512 Concrete Structures II [3-0, 3 cr.]
Design of: deep beams reinforced for shear and torsion; stair cases, slender columns, two-way column-supported slabs, footings, foundation and retaining walls.
Prerequisites: CIE306 Concrete Structures CIE444 Soil Mechanics and I.

CIE517 Earthquake Analysis of Structures [3-0, 3 cr.]
Introduction to earthquake engineering including plate tectonics with emphasis on seismicity of Lebanon; introduction to structural dynamics and natural modes of vibrations, determination of earthquake loading on structures; computer analysis of structural response.
Prerequisites: CIE302 Structural Analysis I and CIE303 Structural Analysis I-Soft.

CIE520 Solid Waste Management [3-0, 3 cr.]
Quantity and quality of municipal and industrial solid wastes, collection, transfer, disposal, treatment and recovery of solid wastes, hazardous and non-hazardous residues, solid waste management principles and processes, environmental impact assessment, environmental legislation and risk, and pollution control management.
Prerequisites: 4th year standing
CIE521 Hydrology [3-0, 3 cr.]
Occurrence of water, precipitation, interception, depression storage, infiltration, evaporation, transpiration, snow melt, well hydraulics, stream flow, data sources, instrumentation, runoff and hydrographs, hydrograph routing, probability in hydrologic design and frequency analysis, and introduction to hydrologic modeling.
Prerequisites: 4th year standing.

CIE522 Environmental Impact Assessment [3-0, 3 cr.]
This course is the study and evaluation of the impacts of large scale projects on the quality of the physical, biological, and socio-economic environment taking into account environmental laws and regulations and EIA guidelines, identification of impacts, quantification methods, mitigation measures, and monitoring plans. Case study involving the preparation of an EIA report.
Prerequisites: consent of instructor or senior standing.

CIE525 Environmental Policy and Management [3-0, 3 cr.]
This course explores human made problems in the environment parallel with concepts in environmental ethics, management and policies so as solutions are provided concerning preservation of the environment. Topics covered are toxic and solid wastes, pollution of air, water, food and soil, international and national environmental ethics, management and policies.
Prerequisites: senior standing.

CIE526 Environmental Remediation [3-0, 3 cr.]
This course deals with processes employing microorganisms, fungi, plants or their enzymes to return contaminated environments, such as polluted waters and soils, to their natural conditions. The control, optimization and monitoring of bioremediation is discussed as well as the environmental factors and microbial populations involved. In-situ, ex-situ applications and genetic engineering approaches are emphasized.
Prerequisites: senior standing.

CIE540 Advanced Geotechnical Engineering [3-0, 3 cr.]
Advanced topics in geotechnical engineering including: Load and Resistance Factor Design (LRFD); design of deep foundations for axial and lateral loading; two-dimensional limiting equilibrium methods of slope stability analysis; design methods for slope stabilization; design of shoring systems such as diaphragm walls, sheet-pile walls, anchored walls, and braced excavations.
Prerequisites: CIE446 Foundation Engineering

CIE563 Transportation Planning and Land Use [3-0, 3 cr.]
Interaction between transportation and land use variables, including modeling requirements, impacts, and data needs within the context of good community planning and economic development; transportation management, administration, finance, system evaluation, implementation, and integration.
Prerequisites CIE465 Transportation Systems Engineering and GNE 331 Probability and Statistics

CIE564 Mass Transit Systems [3-0, 3 cr.]
An overview of mass transit systems; transit system planning including demand and cost analysis and evaluation; transit system design including route design, scheduling, and fare policy; transit networks and marketing; Para transit systems; future trends in mass transit.
Prerequisites INE320 Engineering Economy and CIE465 Transportation Systems Engineering.

CIE582 Infrastructure Management [3-0, 3 cr.]
General methods of engineering systems management and the different types of infrastructure. Application of different methods for the planning and analysis of complex infrastructure projects considering possible financing alternatives, engineering solutions, and overall management issues during the life cycle of the project. Review of selected case studies from the Arab Gulf countries.
Prerequisites: CIE485 Construction Management
CIE584 Quality Management Systems [3-o, 3 cr.]
Introduction to quality management systems, ISO 9000, 14000, Total Quality Management, and the applications of QMS to engineering and management of large projects, systems, and organizations.
Prerequisites: 4th year standing

CIE585 Risk and Natural Hazard Management [3-o, 3 cr.]
Types, frequency, effects of natural hazards, calculation of return period, planning and designing engineering systems to survive natural events, mitigation of damage.
Prerequisites: GNE331 Probability and Statistics.

CIE586 Construction Decisions under Uncertainty [3-o, 3 cr.]
Application of decision analysis theory to construction project and organization decisions under uncertainty; decision trees and sensitivity analysis, utility assessment, multi-attribute utility theory, multiple sampling and decision strategies; bidding theory and use of probabilistic modeling and Monte-Carlo simulation to determine optimal bidding strategies.
Prerequisites: CIE480 Civil Engineering Management Fundamentals and GNE 331 Probability and Statistics

CIE587 Construction Cost Engineering [3-o, 3 cr.]
Cost engineering for construction organizations, projects, and operations. Construction financial accounting, project monitoring and cost controlling; construction financing, break even analysis, profit, earned value, balance sheets, and cash flow analyses; Cost indices, parametric estimates, unit price proposals, quantity take off, cost estimation and bid preparation.
Prerequisites: CIE485 Construction Management

CIE600 Topics in Civil Engineering [3-o, 3 cr.]
Special topic relevant to civil engineering. Course title and content are announced prior to registration time.
Prerequisites: To be announced prior to registration time.

CIE601 Project I [3-o, 3 cr.]
This course provides students with a design experience that is as close as possible to real life design projects; students will work on multidisciplinary teams according to a team work plan and under the supervision of fulltime faculty; each team meets separately with their advisors as needed to complete the work on the project but not less than three times during the semester; students choose from a set of predefined projects that have been approved by the department.
Prerequisites: sixth year standing and consent of instructor

CIE602 Project II [3-o, 3 cr.]
Independent work performed by student with emphasis on research. Selection of topic and progress of work are supervised by a faculty advisor. Formal technical report and presentation are required.
Prerequisites: CIE601 Project I and consent of instructor.
The minor in environmental science is an interdisciplinary program that gives students the opportunity to examine environmental issues from a variety of perspectives. The knowledge of environmental science’s major issues is central to theories and research in chemistry, biology, civil engineering, as well as social science, business, and public policy. This program’s purpose is to provide students with the broad conceptual framework of environmental issues and to offer a new global vision of this interesting discipline.

A minor in environmental science enriches students’ knowledge of existing global environmental issues and problems. It exposes them to important issues related to environmental problems and their causes, including ecosystems and how they work, deforestation, loss of biodiversity, species extinction, air pollution, global warming, ozone depletion, solid waste disposal, renewable energy, etc. Concepts in environmental ethics, management and policies concerning preservation of the environment will also be provided. Additionally it covers topics related to the study of natural and non-natural chemical and microbiological substances in the environment and their transformations, ending with remediation to most of environmental pollution issues.

GOALS OF CURRICULUM

Educational Objectives

1. Provide students with an understanding of the social, economic, political and legal framework of environmental issues
2. Provide students with enough background to be able to collect, analyze and formulate possible solutions to environmental problems;
3. Provide students with an understanding of the intertwining effects and impacts of human activities on the world vital natural resources;
4. Better prepare students for the job market.

Student Outcomes

1. Understand the underlying concepts and principles associated with environmental science;
2. Identify sources of water, soil and air pollutants;
3. Demonstrate familiarity with the practical/field dimensions of a range of environmental problems and issues;
4. Understand the interrelationships between society, economy and environment;
5. Ability to critically review environmental impact assessment reports;
6. Discuss remediation strategies of a variety of environmental contaminants;
7. Recognize potential harmful role of human being in shaping the environment.

MINOR REQUIREMENTS

Students must complete a minimum of 18 credits (9 core credits, 9 elective credits)

Core Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV200</td>
<td>Introduction to Environmental</td>
<td>3</td>
</tr>
<tr>
<td>ENV402/CIE525</td>
<td>Environmental Policy and Management</td>
<td>3</td>
</tr>
<tr>
<td>ENV422/CIE522</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM340</td>
<td>Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIO203</td>
<td>Introduction to Ecology</td>
<td>3</td>
</tr>
<tr>
<td>ENV423</td>
<td>Environmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>CIE424</td>
<td>Water Distribution and Treatment</td>
<td>3</td>
</tr>
</tbody>
</table>
CIE426 Wastewater collection and treatment 3
CIE520 Solid Waste Management 3
CIE585 Risk and Natural Hazard Management 3
ENV426/CIE526 Environmental Remediation 3
ENV427 Environmental Physics 3
*

May replace ENV200 for engineering students only. Biology students may substitute it with BIO331 Ecology. CIE courses are considered as CIE technical electives for civil engineering students.

COURSE DESCRIPTIONS

BIO203 Introduction to Ecology [3-0, 3 cr.]
This course introduces the organization of individual organisms into populations, communities, and ecosystems. It focuses on the interactions between living organisms and their physical environment. Concepts such as diversity, competition, natural selection, adaptation, climate changes, migration, extinction and deforestation are covered. Additionally the course tackles concepts of environmental microbiology in relation to pollution, remediation and recycling of liquid and solid wastes.

CHM340 Environmental Chemistry [3-0, 3 cr.]
This course is a study of natural and non-natural chemical substances in the environment and their chemical transformations. It involves chemistry of energy resources, atmosphere, hydrosphere, biosphere, and, lithosphere (natural and in polluted environment). Principles of chemical reactions, chemical equilibrium and reaction kinetics are applied in this course. Other covered topic is waste treatment and chemical processes. Parallel with these is learning the methods of environmental chemical analysis.

ENV200 Introduction to Environmental Science [3-0, 3 cr.]
This is an introduction to the environmental problems and challenges facing mankind. Global problems will be directly related to issues facing the regional, and local environment. The course covers environmental problems and their causes, ecosystems and how they work, deforestation, loss of biodiversity, species extinction, air pollution, global warming, ozone depletion, solid waste disposal, renewable energy technologies, and applications to alleviate environmental problems. Case studies will be presented, and potential solutions will be attempted. The course includes field trips.

ENV423 Environmental Microbiology [2-3, 3 cr.]
This ecologically based course discusses the relationship of microorganisms with one another and with their environment. It stresses the three major domains of life — Eucaryota, Archaea and Bacteria — and studies their diversity, interactions and physiology in their natural environments. Biodegradation of organic matter, bio-geocycling of minerals and waste bio-treatment are emphasized. The course also deals with metagenomic, metaproteomic techniques and applications as well as the use of microarrays in microbial ecology.

ENV427 Environmental Physics [3-0, 3 cr.]
The course comprises aspects of atmospheric physics, soil physics and many aspects of applied physics. It introduces the essentials in environmental physics, and describes the basics in environmental spectroscopy e.g. black body radiation and the solar UV and life. It also addresses the global climate, energy balance, energy available for human use, transport of pollutants, and noise pollution. The course also discusses risk estimations, energy saving and nature and future thinking in the context of the global society.

CIE course descriptions are included in relevant sections of this academic catalog.
Master of Science (M.S.) in Civil and Environmental Engineering

The Department of Civil Engineering at LAU offers a comprehensive program leading to the degree of Master of Science (M.S.) in Civil and Environmental Engineering (CEE) with one of three emphases: (i) Infrastructure and Construction Management; (ii) Environmental Science, Engineering and Management; or (iii) Engineering Mechanics.

The program provides graduate students with a sound professional and academic training in civil engineering, giving them access to a variety of courses in their area of study, as well as the opportunity to conduct research, thus combining the theoretical and the applied aspects of civil engineering. The program is designed to stimulate independent thinking and the acquisition of knowledge, as well as the application of acquired knowledge and skills to the solution of practical engineering problems. The program provides an in-depth experience with one or more particular fields of civil engineering, while simultaneously exposing the student to cross-disciplinary issues and topics that affect the engineering and management of systems. Flexibility is a key benefit of this program as it allows students to plan their degree in line with their long-term career goals, and to be consistent with any professional experience and prior training they may have. The degree may be completed with or without a thesis.

MISSION

The mission of the graduate program in Civil and Environmental Engineering at LAU is to provide students with a well-rounded set of career skills that empowers them to address a wide range of problems through exposure to an advanced body of knowledge and scholarly endeavors.

GOALS OF CURRICULUM

Educational Objectives

The purpose of the graduate program in Civil and Environmental Engineering is to:

1. Train students to develop the methodology and necessary skills to explore emerging issues in engineering and science;
2. Provide students with an advanced background and a focused body of knowledge required for the present day professional practice in their chosen field of study, and to prepare them to adapt to a changing profession;
3. Train the students in an active research environment, to equip them with the latest tools of research, and to prepare them for further study toward the Doctoral Degree.

Student Learning Outcomes

Graduates of the M.S. in Civil and Environmental Engineering program will be able to:

1. Reinforce skills developed in the undergraduate program;
2. Use advanced analytical, computational, and/or experimental aspects of civil engineering;
3. Make critical judgments based on a sound knowledge base;
4. Conduct research and appreciate its importance in the evolution of civil engineering.
EMPHASIS AREAS
The course work for the M.S. in CEE can be grouped into the following three concentrations or emphasis areas:

Infrastructure and Construction Management: This is designed to prepare the graduates to meet the challenges of planning, financing, designing, building and managing public and private infrastructure under growing technical, financial, social and environmental constraints.

Environmental Science, Engineering and Management: This is designed to prepare graduates to meet the challenges of sustainable development and natural resources management while protecting the environment.

Engineering Mechanics: This is designed to prepare graduates to meet the challenges of designing technically efficient, cost-effective, and state-of-the-art facilities that are responsive to natural hazards and economic constraints.

ADMISSION REQUIREMENTS
Applicants for admission to this program must have a Bachelor of Science in Engineering, or a Bachelor of Engineering degree, from a recognized university, with a minimum general Grade Point Average (GPA) equivalent to 2.75 on a 4-point scale, or 2.75 in the major. If the bachelor’s degree is not in the field to be pursued, and/or if the GPA is less than 2.75, the applicant may be admitted as “special,” as described in the Academic Rules and Regulations for graduate programs.

The GRE general exam is required of all applicants (GRE subject exams are not required). All applicants must submit scores for the GRE general exam (includes verbal reasoning, quantitative reasoning, and analytical writing scores). Your GRE test scores are an important part of your application. GRE test scores that are more than five years old will not be accepted.

The admissions committee considers several factors when making decisions, including your academic performance at prior institutions (grades, rankings, and GPAs) and your GRE test score. The graduate assistantship rate, when requested, is directly related to your GPA and GRE scores. Letters of recommendation are optional; however, three letters are recommended, two of which to be completed by faculty who are familiar with your academic performance.

GRADUATION REQUIREMENTS
Students are required to complete 30 credits for graduation. Students can choose to pursue either a thesis or a non-thesis option. Those who take the thesis option are required to complete a six-credit thesis. The remaining credits can be completed according to the course requirements in each concentration or emphasis area, as specified below. The breadth requirements consist of six courses (18 credit hours) for all of the emphasis areas. The student should take at least the equivalent of 18 credits in engineering courses.

Students with a Bachelor of Engineering (B.E.) degree who are pursuing an M.S. degree may transfer up to six credits from their B.E. degree, provided that the transferred credits correspond to courses labeled graduate courses and the student has scored, at least, a grade of B on each of these courses. The transfer of credits is governed by the rules and regulations for graduate programs.

In order to satisfy the requirements for the M.S. in CEE with a specific concentration or emphasis, the student is required to complete either one of the following options:

Infrastructure and Construction Management: The student is required to complete at least four courses from Infrastructure and Construction Management, one course from Optimization (please refer to the Industrial and Mechanical Engineering Department for courses in Optimization), and any course offered by the School of Engineering.
Environmental Science, Engineering and Management
The student is required to complete at least four courses from Environmental Science, Engineering and Management, and any two courses offered by the School of Engineering.

Engineering Mechanics
The student is required to complete at least four courses from Engineering Mechanics, and any two courses offered by the School of Engineering.

The remaining courses may be taken from any graduate program of the School of Engineering or any approved graduate course in the university, including business, international affairs, biology, toxicology, chemistry, and computer science.

It is recommended that the remaining courses in each program/emphasis area are chosen in the thesis area, if a thesis option is selected, and is done in consultation with the student's advisor. It is important to note that offering courses in a specific concentration area is contingent on adequate enrollment in that specific course/area.

CURRICULUM

Infrastructure and Construction Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE760</td>
<td>Transportation Engineering II</td>
<td></td>
</tr>
<tr>
<td>CIE761</td>
<td>Traffic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIE782</td>
<td>Infrastructure Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE784</td>
<td>Quality Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>CIE785</td>
<td>Risk and Natural Hazard Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE786</td>
<td>Highway Design and Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE787</td>
<td>Concrete and Steel Construction</td>
<td>3</td>
</tr>
<tr>
<td>CIE788</td>
<td>GIS and Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>CIE789</td>
<td>Cost Engineering and Control</td>
<td>3</td>
</tr>
<tr>
<td>CIE790</td>
<td>Construction Methods</td>
<td>3</td>
</tr>
<tr>
<td>CIE791</td>
<td>Project Scheduling</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Science, Engineering and Other Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE720</td>
<td>Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE721</td>
<td>Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CIE722</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
</tr>
<tr>
<td>CIE723</td>
<td>Water Resources: Planning and Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE724</td>
<td>Air Quality Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE725</td>
<td>Geo-environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIE726</td>
<td>Unit Operations of Water Treatment Systems</td>
<td>3</td>
</tr>
<tr>
<td>CIE727</td>
<td>Unit Operations of Wastewater Treatment Systems</td>
<td>3</td>
</tr>
<tr>
<td>CIE728</td>
<td>Fate & Transport of Pollutants in the Environment</td>
<td>3</td>
</tr>
<tr>
<td>CIE729</td>
<td>Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>CIE730</td>
<td>Irrigation and Drainage</td>
<td>3</td>
</tr>
<tr>
<td>CIE731</td>
<td>Urban Water Resources</td>
<td>3</td>
</tr>
<tr>
<td>CIE732</td>
<td>Advanced Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIE733</td>
<td>Groundwater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIE799</td>
<td>Special Topics Course</td>
<td>3</td>
</tr>
<tr>
<td>CIE891</td>
<td>Project Course</td>
<td>3</td>
</tr>
<tr>
<td>CIE899</td>
<td>Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

CIE700 Steel Structures [3-0, 3 cr.]
This course is an introduction to the LRFD philosophy. It covers the behaviour and design of steel structures, design of tension members, simple connections, compression members, laterally supported beams, beams under torsion and beams under lateral torsional loading.

Pre-requisites: CIE302 Structural Analysis I and CIE304 Stress Analysis.
CIE701 Finite Element Methods [3-0, 3 cr.]
This course covers stress analysis of solids, which include: shape function, displacement interpolation, linear constitutive relations, element stiffness-matrix, direct stiffness method, assessment of model adequacy and error estimation. It also covers stress analysis using commercial software.
Prerequisites: CIE202 Mechanics of Materials.

CIE704 Case Histories in Structural and Geotechnical Engineering [3-0, 3 cr.]
This course is a selection of case histories in structural and geotechnical engineering, exposing the failures and limitations of the current practice and exploring state of the art solutions. The course involves site visits and visiting lecturers.
Prerequisites: CIE302 Structure Analysis I and CIE444 Soil Mechanics.

CIE705 Computational Hydraulics [3-0, 3 cr.]
This course covers the formulation of ordinary and partial differential equations related to flow and transport problems such as flood waves, tidal propagation, shallow waves and transport of pollutants. The course also covers the numerical solutions using finite difference (explicit and implicit) schemes, finite element techniques and boundary integral methods. Also, the course comprises the measuring techniques in flow problems, data acquisition and online analysis.
Prerequisites: CIE322 Hydraulics.

CIE706 Structural Dynamics [3-0, 3 cr.]
The course covers the dynamics effects of wind, earthquake, impact and blast loading, vibration of structural components and the damping effects.
Prerequisites: CIE302 Structural Analysis I.

CIE707 Earthquake Engineering [3-0, 3 cr.]
This course is an introduction to earthquakes, seismological and faulting mechanisms, design of constructed facilities and infrastructural systems under earthquake loads, risk assessment and strengthening and case studies.
Pre-requisites: CIE302 Structure Analysis I and GNE331 Probability and Statistics.

CIE708 Applied Elasticity [3-0, 3 cr.]
This course covers tensor notation, analysis of stress, two-dimensional elasticity, bending of beams torsion of prismatic bars, asymmetrically loaded members, beams on elastic foundations and elastic stability.

CIE709 Advanced Concrete Design [3-0, 3 cr.]
This course covers advanced topics in concrete design that include: Combined Footings, Retaining Walls, Mat Foundations, Pile Caps, Torsion, Walls, Shell Structures, Computer Aided Design of Concrete, in addition to other topics of interest.
Prerequisites: CIE306 Concrete Structures I and CIE446 Foundation Engineering.

CIE710 Pre-stressed Concrete Design [3-0, 3 cr.]
This course covers the design of pre-stressed concrete structures, with an emphasis on flexural design of beams and slabs.
Prerequisites: CIE306 Concrete Structures I.

CIE711 Pavement Design [3-0, 3 cr.]
This course covers the beam on elastic foundation, rigid and flexible pavements, highway and airport pavements, pavement performance and pavement systems management and maintenance.
Prerequisites: CIE460 Highway Engineering I and CIE444 Soil Mechanics.

CIE712 Design of Hydraulics Structures [3-0, 3 cr.]
This course covers the history and background, function, planning process, types, analysis and design of culverts and bridge openings, dam appurtenances, intakes, aprons, chute blocks, spillways and drop structures. It also covers dam safety, stability and protection against scour.
Prerequisites: CIE322 Hydraulics and CIE306 Concrete Structures I.

CIE720 Solid Waste Management [3-0, 3 cr.]
This course covers the quantity and quality of municipal and industrial solid wastes; the collection, transfer, disposal, treatment and recovery of solid wastes; hazardous and nonhazardous residues, solid waste management processes,
environmental impact assessment, environmental legislation and risk, and pollution control management.

Prerequisites: Consent of instructor.

CIE721 Hydrology [3-o, 3 cr.]
This course covers the occurrence of water, precipitation, interception, depression storage, infiltration, evaporation, transpiration, snow melt, well hydraulics, stream flow, data sources, instrumentation, runoff and hydrographs, urban hydrology, hydrograph routing, probability in hydrologic design and the introduction to hydrologic modeling.

Prerequisites: Consent of instructor.

CIE722 Environmental Impact Assessment [3-o, 3 cr.]
This course covers the study and evaluation of the impacts of large-scale projects on the quality of the physical, biological and socio economical environment, taking into account environmental laws and regulations as well as environmental impact assessment guidelines. The course covers the identification of impacts, quantification methods, mitigation measures, and monitoring plans. The course deals with a case study involving the preparation of an environmental impact assessment report.

Prerequisites: Consent of the instructor.

CIE723 Water Resources Planning and Management [3-o, 3 cr.]
This course covers the major issues in the planning and management of water resource systems, and the techniques — such as linear programming, dynamic programming and nonlinear programming — that are used to solve them. Practical problems in water resource systems such as water allocation, water quality management, reservoir operations, flood control, water resources management, basin modeling and flood and drought forecasting demonstrated are discussed with system analysis methods.

Prerequisites: CIE721 Hydrology.

CIE724 Air Quality Management [3-o, 3 cr.]
This course covers the analysis of air pollution sources and methods for controlling emissions, with a focus on transportation-related air pollution. The course also encompasses a summary of fundamental chemical and physical processes governing pollutant behavior, and a quantitative overview of the characterization and control of air pollution problems. The analysis of key elements of the air pollution system such as the sources and control techniques, atmospheric transformations, atmospheric transport and modeling are discussed.

Pre-requisites: CIE320 Fluid Mechanics and CHM201 Chemical Principles.

CIE725 Geo-environmental Engineering [3-o, 3 cr.]
This course covers the geotechnical practice in environmental protection and restoration. The characterization of contaminated sites, preliminary site assessment, site investigation techniques and site cleanup and remediation technologies, as well as the monitoring requirements, are discussed. The course also covers the methods of soil and site characterization for siting of waste repositories, the design of waste containment systems, including landfills, slurry walls and soil stabilization, as well as the applicability and use of geosynthetics.

Prerequisites: CIE444 Soil Mechanics.

CIE726 Unit Operations of Water Treatment Systems [3-o, 3 cr.]
This course covers the theory of aquatic chemistry and the principles of conventional and advanced unit operations, such as sedimentation, filtration, aeration, ion exchange, reverse osmosis for the treatment of drinking water and decontamination of groundwater, stability and conditioning, in addition to a detailed design of inlets, outlets and operational parts of the treatment plant.

Prerequisites: CIE424 Water Distribution and Treatment

CIE727 Unit Operations of Wastewater Treatment Systems [3-o, 3 cr.]
This course covers wastewater characteristics and laboratory analysis, population kinetics and micro-organisms and their role in the various waste treatment processes, as well as process selection, oxidation kinetics, process modeling and control, sludge treatment and disposal, and unit operations and processes of
wastewater treatment.

Prerequisites: CIE426 Wastewater Collection and Treatment.

CIE728 Fate and Transport of Pollutants in the Environment [3-0, 3 cr.]
This course emphasizes man-made chemicals, their movement through surface and groundwater, air, soil, and their eventual fate. The course covers the physical transport, as well as chemical and biological sources and sinks, and the linkages to health effects, sources and control and policy aspects.
Prerequisites: CHM201 Chemical Principles and CIE322 Hydraulics.

CIE729 Hydrogeology [3-0, 3 cr.]
This course covers the natural parameters, distribution of water, hydro-geological structures, movement and storage of water, methods of investigation, collection of samples, observation of water levels, measurement of aquifer properties, speed and direction of ground water flow, and hydro-geological models.
Prerequisites: CIE721 Hydrology.

CIE730 Irrigation and Drainage [3-0, 3 cr.]
This course covers the irrigation practices application systems, soil-plant-water relationships, irrigation system types, scheduling, effluent reuse, case studies, quantity and quality of stream flow generated in a drainage basin, and surface, and subsurface, drainage systems.
Prerequisites: CIE322 Hydraulics.

CIE731 Urban Water Resources [3-0, 3 cr.]
This course covers the urban climate, urban development effects on catchments responses, design of storm water drainage systems, master plans, management for water pollution, sedimentation, and erosion control, use of models for planning and operation, flood control, reservoir design and operation (linear and dynamic programming, and case studies.
Prerequisites: CIE721 Hydrology.

CIE732 Advanced Environmental Engineering [3-0, 3 cr.]
This course covers reaction kinetics, classes and types of reactions, rates and orders, analysis of experimental data, applications, setup of mass balances, flow analysis of CM and PF regimes, detention time in vessels, flow and quality equalization, system material balances, sludge production in activated sludge systems, nitrogen and phosphorus removal, treatment in ponds and wetlands as well as natural systems, fate and transport of pollutants in natural waters, loading equations for streams, dissolved oxygen variation in a stream.
Prerequisites: CIE426 Wastewater Collection and Treatment.

CIE733 Groundwater Engineering [3-0, 3 cr.]
This course covers the flow of incompressible fluids through porous media, groundwater movement, Darcy’s law, groundwater production, recharge, quality, saltwater intrusion, aquifer management, differential equations governing the flows, laboratory and field methods of hydraulic conductivity measurements, confined and unconfined flow, and graphical flow nets and the use of analogs, as well as seepage control in earth structures, soil stabilization, drainage, geo-textiles, and construction denaturing.
Prerequisites: CIE721 Hydrology.

CIE742 Foundations Engineering [3-0, 3 cr.]
This course is an introduction to the elastic and plastic theories of foundations, behavior and design of shallow foundations, behavior and design of lateral earth retaining structures, and an introduction to deep foundations design, and case studies.
Prerequisites: CIE444 Soil Mechanics.

CIE760 Transportation Engineering II [3-0, 3 cr.]
This course covers the analysis and design of infrastructure systems, components of highway systems, interchanges, intersections, execution methods and practices, and the basic design of major transportation facilities.
Prerequisites: CIE460 Highway Engineering.

CIE761 Traffic Engineering [3-0, 3 cr.]
This course covers the human and vehicular characteristics, as they affect highway traffic flow, traffic regulations, accident cause and prevention, improving the flow on existing facilities, planning traffic systems, and terminal problems.
CIE782 Infrastructure Management [3-0, 3 cr.]
This course covers the general methods of engineering systems management, and the different types of infrastructure. The course analyzes the possible financing and engineering solutions, and alternatives, as well as the overall management during the life cycle of the project.
Prerequisites: CIE485 Construction Management.

CIE784 Quality Management Systems [3-0, 3 cr.]
This course is an introduction to quality management systems, ISO 9000, 14000, Total Quality Management, and the applications of QMS to engineering and management of large projects, systems, and organizations.
Prerequisites: Consent of the instructor.

CIE785 Risk and Natural Hazard Management [3-0, 3 cr.]
This course covers the types, frequency, and the effects of natural hazards, the calculation of the return period, and the planning and designing of engineering systems to survive natural events, as well as the mitigation of damage.
Prerequisites: GNE331 Probability and Statistics.

CIE786 Highway Design and Management [3-0, 3 cr.]
This course is an introduction to highway networks, their engineering and management characteristics, and their maintenance and performance issues, financing and cost recovery methods, and integrated solutions and information technology tools (use of HDM tools by the World Road Association PIARC).
Prerequisites: CIE460 Highway Engineering and INE320 Engineering Economy.

CIE787 Concrete and Steel Construction [3-0, 3 cr.]
This course covers the selection and planning of construction methods for modern concrete and steel structures, including bridges, high-rise buildings, sea structures, structural steel erection, and the heavy industrial plants including special forming and heavy erection and false-work.
Prerequisites: CIE306 Concrete Structures I, CIE400 Steel Structures, and CIE485 Construction Management.

CIE788 GIS and Remote Sensing [3-0, 3 cr.]
This course covers the fundamentals of sensing earth resources, data acquisition and analysis, aircraft and satellite images, digital image processing, pattern recognition, feature extraction, and the geographic information systems in various applications, using GIS software including ARC-INFO and ARC-VIEW.
Prerequisites: CIE361 Surveying.

CIE789 Cost Engineering and Control [3-0, 3 cr.]
This course covers cost engineering for construction organizations, projects, and operations. It encompasses construction financing, break-even, profit, and cash flow analyses, and capital budgeting, as well as the equipment cost and procurement decisions. Construction financial accounting, cost accounting, cost control systems, and databases are discussed, as well as cost indices, parametric estimates, and unit price proposals, measuring work and settling claims.
Prerequisites: CIE485 Construction Management.

CIE790 Construction Methods [3-0, 3 cr.]
This course is an advancement study of the application and analysis of construction equipment and methods. Topics include drilling, blasting, tunneling, dewatering foundations, and rigging studies.
Prerequisites: CIE308 Construction Materials and CIE306 Concrete Structures I.

CIE791 Project Scheduling [3-0, 3 cr.]
This course covers the basic critical path planning, and scheduling, with arrow and precedence networks. The course is an introduction to resource leveling, and least cost scheduling, including time-cost tradeoff analysis, and schedule control.
Prerequisites: Consent of instructor.

CIE792 Project Contracting [3-0, 3 cr.]
This course covers construction and contracting for contractors, owners and engineers, industry structure, the types of contracts and delivery systems of construction, and the planning, estimating, quantity takeoff and pricing, labor and equipment estimate, as well as the proposal preparation. Students use contract documents to prepare detailed estimates.
Prerequisites: Consent of instructor.
CIE799 Special Topic Course [3-o, 3 cr.]
This course is a special topic course, which can be offered in any of the concentration areas. When offered, it is counted towards the Degree requirements as a regular course.
Prerequisites: To be announced prior to registration time.

CIE891 Project Course [3-o, 3 cr.]
This course is a project course in any of the concentration areas. It can be taken by the Graduate student seeking a non-thesis Master’s degree. It is contingent upon the advisor’s approval. The student is limited to one project course per degree.
Prerequisites: Consent of the instructor.

CIE899 Thesis [6-o, 6 cr.]
This course is an independent work performed by students with emphasis on research, and leading to original contribution to knowledge. The selection of the topic and the progress of the work are supervised by a faculty advisor. The student is limited to one thesis course per degree.
Prerequisites: Consent of the instructor.

Department of Electrical & Computer Engineering

PROGRAMS/DEGREES AVAILABLE:
- Bachelor of Engineering (B.E.) in Computer Engineering
- Bachelor of Engineering (B.E.) in Electrical Engineering
- Master of Science (M.S.) in Computer Engineering
The Bachelor of Engineering degree program in Computer Engineering is accredited by the Engineering Accreditation Commission of ABET (www.abet.org).

Students in the computer engineering program develop an in-depth knowledge of digital systems, computers, software, networks, and communications systems. In addition to core topics in electrical and computer engineering, students are exposed to subjects including microprocessors, operating systems, computer architecture, database systems, networks, electronics, control systems, software engineering, reconfigurable computing, communications systems, and telecommunications. This provides for a balanced coverage and an integration of hardware, software, and communications engineering. As part of the academic program, six credits of professional experience are included in the last summer prior to graduation, to give students an opportunity to integrate classroom instruction with practical work experience.

The broad scope of the program enables the students to pursue different career paths in the design and use of computing and communication systems. Graduates of the program are prepared for employment in the computer and communication industries, and may also select to pursue graduate studies.

The computer engineering program is credit-based and requires the completion of 150 semester hours. A typical schedule is listed below and extends over a four-year period including summer modules; students may opt to take these courses over a longer period of time.

MISSION
The mission of the Computer Engineering program is to educate each student to become a responsible and productive computer engineer who can effectively manage future challenges.

GOALS OF CURRICULUM

Program Educational Objectives
Within a few years of graduation, the graduates of the Computer Engineering program will:
1. Demonstrate technical aptitude in Computer Engineering careers and/or graduate studies
2. Establish themselves in diverse fields of Computer Engineering
3. Conduct themselves as effective professionals

Student Outcomes
The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:
1. An ability to apply knowledge of mathematics, science, and engineering;
2. An ability to design and conduct experiments, as well as to analyze and interpret data;
3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
4. An ability to function on multidisciplinary teams;
5. An ability to identify, to formulate, and to solve engineering problems;
6. An understanding of one’s professional and ethical responsibility;
7. An ability to communicate effectively;
8. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;
9. Recognition of the need and the ability to engage in lifelong learning;
10. Knowledge of contemporary issues;
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

MAJOR REQUIREMENTS

YEAR I (42 CREDITS)

Fall Semester (16 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG202</td>
<td>Sophomore Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>PHY201</td>
<td>Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>MTH201</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>COE212</td>
<td>Engineering Programming</td>
<td>3</td>
</tr>
<tr>
<td>GNE212</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (16 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH207</td>
<td>Discrete Structures I</td>
<td>3</td>
</tr>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
<tr>
<td>ETH201</td>
<td>Moral Reasoning</td>
<td>1</td>
</tr>
<tr>
<td>MTH206</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>MTH304</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>ELE201</td>
<td>Electrical Circuits I</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module I (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (3 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA2/-3-</td>
<td>Arabic Language/Literature</td>
<td>3</td>
</tr>
</tbody>
</table>

YEAR II (37 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLT201</td>
<td>Basic Health</td>
<td>1</td>
</tr>
<tr>
<td>ENG203</td>
<td>Fundamentals of Oral</td>
<td>3</td>
</tr>
<tr>
<td>ELE302</td>
<td>Electrical Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>ELE303</td>
<td>Electrical Circuits II Lab</td>
<td>1</td>
</tr>
<tr>
<td>COE312</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>COE321</td>
<td>Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>COE322</td>
<td>Logic Design Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester (16 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>———</td>
<td>Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE401</td>
<td>Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ELE402</td>
<td>Electronics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>ELE430</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE323</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module I (2 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE301</td>
<td>Professional Communication</td>
<td>2</td>
</tr>
</tbody>
</table>

Summer Module II (4 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PED—</td>
<td>Physical Education</td>
<td>1</td>
</tr>
<tr>
<td>GNE331</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

YEAR III (38 CREDITS)

Fall Semester (17 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE320</td>
<td>Engineering Economy I</td>
<td>3</td>
</tr>
<tr>
<td>ELE442</td>
<td>Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELE443</td>
<td>Control Systems Lab</td>
<td>1</td>
</tr>
<tr>
<td>ELE537</td>
<td>Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>COE423</td>
<td>Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COE493</td>
<td>Professionalism</td>
<td>3</td>
</tr>
<tr>
<td>COE324</td>
<td>Microprocessors Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester (15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECE Track X1</td>
<td>3</td>
</tr>
<tr>
<td>COE424</td>
<td>Digital Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE425</td>
<td>Digital Systems Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ECE Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>COE492</td>
<td>Fundamentals in ECE</td>
<td>1</td>
</tr>
<tr>
<td>ELE540</td>
<td>Communications System Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer Module II (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE498</td>
<td>Professional Experience</td>
<td>6</td>
</tr>
</tbody>
</table>

YEAR IV (33 CREDITS)

Fall Semester (18 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE418</td>
<td>Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE414</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE591</td>
<td>Capstone Design Project</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Track X2</td>
<td>3</td>
</tr>
<tr>
<td>COE593</td>
<td>COE Application</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Track U1</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE416</td>
<td>Software Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE431</td>
<td>Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Track U2</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL ELECTIVES

ECE technical electives for both COE and ELE programs are grouped into four different tracks. The four tracks and their respective courses are:

Communication & Networks:
- ELE535 Information & Coding Theory
- ELE531 Optical Fiber Communication
- ELE538 Noise in Communications
- ELE539 Telecommunications
- COE535 Optical Networks

Computer Hardware & Systems:
- COE527 VLSI Design
- COE521 Embedded Systems
- COE522 High Performance Computer Architecture

Systems Engineering:
- ELE548 Linear Systems
- ELE553 Reliability
- ELE525 Faulted Power Systems
- ELE526 Renewable Energy Sources
- ELE501 Microelectronics

Theory & Algorithms:
- COE555 Queuing Theory
- ELE535 Information & Coding Theory
- ELE557 Sim. of Electronics Circuits

ENGINEERING ELECTIVES

Engineering electives can be any of the following courses:
- INE307 Deterministic OR models
- INE308 Stochastic OR models
- INE428 Project Management
- INE529 Project Contracting
• INE527 Project Scheduling
• INE350 Simulation
• INE402 Optimization
• INE506 Decision Analysis
• MEE401 Energy systems (2 credits)
• MEE590 Energy Audit (2 credits)
• MEE599 Introduction to Mechatronics
• CIE520 Solid Waste Management
• CIE521 Hydrology
• CIE522 Environmental Impact Assessment
• CIE525 Environmental Policy and Management
• CIE526 Environmental Remediation
• CIE584 Quality Management Systems
• CIE585 Risk and Natural Hazard Management
• CIE723 Water Resources Planning and Management
• CIE733 Groundwater Engineering
• CIE788 GIS and Remote Sensing

Except for ELE305, ELE391 and COE312, any COE/ELE course can be considered as a technical elective as long as it is not a required course. COE599/ELE599 could be taken more than once for credit when topics differ.

COURSE DESCRIPTIONS

COE201 Computer Proficiency [0-2, 1 cr.]
This course covers word processing, spreadsheet, presentation software, internet, e-mail, database and web design.

COE211 Computer Programming [3-2, 4 cr.]
This course covers a one-language syntax, structured programming, basic constructs (arrays, etc.), object-oriented programming and projects.
Prerequisites: COE201 Computer Proficiency.

COE212 Engineering Programming [3-0, 3 cr.]
This course covers a high-level programming language syntax, structured programming, basic constructs, arrays, object programming, case studies, and projects tailored towards solving engineering and mathematically-oriented problems.

COE312 Data Structures [3-0, 3 cr.]
This course covers the programming principles, stacks and recursion, queues, lists, searching, and sorting algorithms, binary trees and the introduction to object-oriented programming concepts.
Prerequisites: COE212 Engineering Programming.

COE321 Logic Design [3-0, 3 cr.]
This course provides an introduction to digital logic circuits and covers binary number representations, combinational logic design, Boolean algebra, arithmetic circuits, regular logic, programmable logic devices, flip flops, registers, counters, sequential state machines, and asynchronous and synchronous logic.
Prerequisites: COE201 Computer Proficiency, COE212 Engineering Programming, MTH207 Discrete Structures I.

COE322 Logic Design Lab [0-3, 1 cr.]
This laboratory course provides hands-on experience implementing digital logic design systems using modern computer-aided design tools, discrete components, breadboards, and digital probes.
Concurrent with COE321 Logic Design.

COE323 Microprocessors [3-0, 3 cr.]
This course covers the internals of the microprocessor and assembly language, storing, manipulating, moving data, basics of control flow, interfacing to other devices, basics of writing good assembly code using the stacks and position independent codes.
Prerequisites: COE321 Logic Design.
COE324 Microprocessor Lab [0-3, 1 cr.]
This is a lab course with experiments in microprocessors.
Concurrent with COE323 Microprocessors.

COE414 Operating Systems [3-0, 3 cr.]
This course provides an overview of operating systems and provide the basic structure and architecture of some operating systems in the market. This course covers the process creation, management, synchronization, communications, and scheduling. Memory management and protection.
Prerequisites: COE312 Data Structures, COE323 Microprocessors.

COE416 Software Engineering [3-0, 3 cr.]
This course covers the analysis, development, design and documentation of software.
Prerequisites: COE312 Data Structures.

COE418 Database Systems [3-0, 3 cr.]
This course covers the data modeling, relational database, SQL, query languages, object oriented databases and client-server databases.
Prerequisites: COE212 Engineering Programming.

COE423 Computer Architecture [3-0, 3 cr.]
This course introduces computer components and systems. Topics include evolution of computer systems, bus interconnections, I/O mechanisms, memory management and hierarchy, instruction set design, and basic pipelined techniques.
Prerequisites: COE323 Microprocessors.

COE424 Digital Systems [3-0, 3 cr.]
This course is an introduction to digital systems design and covers timing concepts, area-delay tradeoffs, pipelining, and synthesis. Register transfer notation and VHDL are introduced to model, simulate, and verify designs. Topics include field-programmable gate arrays, technology mapping, layout synthesis, and routing.
Prerequisites: COE323 Microprocessors.

COE425 Digital Systems Lab [0-3, 1 cr.]
This laboratory course provides hands-on experience implementing complex digital systems using modern computer-aided design tools, FPGA-based boards, and various I/O devices.
Concurrent with COE424 Digital Systems.

COE431 Computer Networks [3-0, 3 cr.]
This course covers the topologies, installation and configuration, testing, modeling and simulation of networks. In addition to: protocols, standards, TCP/IP, and socket programming.
Fourth year standing required.

COE492 FUNDAMENTALS IN ECE [0-3, 1 cr.]
This course consolidates the concepts covered in the first two years of the program in mathematics, computers, and engineering with emphasis on their practical applications in ECE. It also provides an accurate and comprehensive assessment for these concepts by exposing the students to professional engineering and FE-style examinations.
Concurrent with COE424 Digital Systems.

COE493 PROFESSIONALISM IN ENGINEERING [3-0, 3 cr.]
Overview of the nature and scope of engineering profession. Working on a multidisciplinary team environment; professional and ethical responsibility; the impact of engineering solutions in a global and societal context; contemporary issues; and life-long learning.
Prerequisites: Third year standing required.

COE498 Professional Experience [0-6, 6 cr.]
This course entails professional experience through training in the execution of real-life engineering projects.
Prerequisites: Fifth year standing and instructor's consent.
COE522 High Performance Computer Architecture [3-0, 3 cr.]
This course covers topics in advanced pipelined techniques and scheduling, instruction level parallelism, and dynamic scheduling. Advanced processor design techniques are introduced such as superscalar, super-pipelined, VLIW, multiprocessing, multithreading, and supercomputing architectures. In addition, relationships between high-performance computing and interconnection networks, embedded systems, advanced storage systems, and cloud computing examples are established.
Prerequisites: COE423 Computer Architecture or instructor’s consent.

COE526 VLSI Design Automation [3-0, 3 cr.]
This course covers the algorithms and methodologies for the synthesis, analysis, and verification of digital systems, silicon compilation, high-level synthesis, logic synthesis, and layout synthesis, hardware description languages and their use in the synthesis process, fault simulation and coverage analysis, and the extensive use of electronic design automation Tools.
Prerequisite: COE321 Logic Design.

COE527 VLSI Design [3-0, 3 cr.]
This course covers the VLSI design, circuits’ layout, timing, delay, power estimation, use of layout editors and circuit simulation tools, synthesis, and an introduction to electronic design automation.
Prerequisite: COE321 Logic Design

COE533 Advanced Computer Networks [3-0, 3 cr.]
This course covers advanced networks, remote procedure calls (RPC’s), layering and ISO.
Prerequisites: COE431 Computer Networks.

COE591 Capstone Design Project I [3-0, 3 cr.]
The course is devoted to the solution of open-ended engineering design projects with functional specifications and realistic constraints. This project provides a culminating major design experience that is concluded by a written report and an oral presentation.
Prerequisites: Fifth-year standing.

COE592 Project II [3-0, 3 cr.]
This course is an advanced engineering project, using acquired technical knowledge, formal report, and presentation.
Prerequisites: Final-year standing and instructor’s consent.

COE593 COE Application [3-0, 3 cr.]
This course allows COE graduates to acquire the technical skills that are required to match a specific industry-related need. In particular, it exposes students to the techniques, which can improve their chances of gaining employment in jobs aligned with the considered need. This exposure is reinforced by an extensive hands-on experience that is brought into classroom through small-scale projects pertaining to problems inspired from the identified need.
Prerequisite: Fourth-year standing.

COE599 Topics in Computer Engineering [1-3, 3 cr.]
This course covers the treatment of new developments in various areas of computer engineering.
Prerequisites: Fifth-year standing.
The Bachelor of Engineering degree program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET (www.abet.org).

Electrical Engineering is a science-oriented branch of engineering, primarily concerned with all the phases of development and utilization of electric signals. The study of electrical engineering can be conveniently divided into the areas of circuits, electronics, electromagnetism, electric energy systems, communications, control, and computer engineering. Due to the extremely rapid growth and changes relating to the application of electrical engineering principles, the curriculum is designed for concentration on a solid core of basic foundation courses, covering all areas of electrical engineering. As part of the academic program, six credits of professional experience are also included in the last summer prior to graduation, to give students an opportunity to integrate classroom instruction with practical work experience.

The Electrical Engineering program is credit-based and requires the completion of 150 semester hours. A typical schedule is listed below and extends over a four-year period, including summer modules; students may select to take these courses over a longer period of time.

MISSION
The mission of the Electrical Engineering program is to educate each student to become a responsible and productive electrical engineer capable of effectively managing future challenges.

GOALS OF CURRICULUM

Program Educational Objectives
Within a few years of graduation, the graduates of the Electrical Engineering program will:
1. Demonstrate technical aptitude in Electrical Engineering careers and/or graduate studies;
2. Establish themselves in diverse fields of Electrical Engineering;
3. Conduct themselves as effective professionals.

Student Outcomes
The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:
1. An ability to apply knowledge of mathematics, science, and engineering;
2. An ability to design and conduct experiments, as well as to analyze and interpret data;
3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
4. An ability to function on multidisciplinary teams;
5. An ability to identify, to formulate, and to solve engineering problems;
6. An understanding of one’s professional and ethical responsibility;
7. An ability to communicate effectively;
8. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;
9. A recognition of the need and the ability to engage in lifelong learning;
10. A knowledge of contemporary issues;
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

CURRICULUM

YEAR I (42 CREDITS)

Fall Semester (17 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG202</td>
<td>Sophomore Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>PHY201</td>
<td>Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>MTH201</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>GNE212</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>COE201</td>
<td>Computer Proficiency</td>
<td>1</td>
</tr>
<tr>
<td>COE212</td>
<td>Engineering Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (16 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH207</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
<tr>
<td>ETH201</td>
<td>Moral Reasoning</td>
<td>1</td>
</tr>
<tr>
<td>MTH304</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MTH206</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>ELE201</td>
<td>Electrical Circuits I</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module I (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA2-73</td>
<td>Arabic Language/Literature</td>
<td>3</td>
</tr>
</tbody>
</table>

YEAR II (37 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG203</td>
<td>Fund. of Oral Communication</td>
<td>3</td>
</tr>
<tr>
<td>COE321</td>
<td>Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>COE322</td>
<td>Logic Design Lab</td>
<td>1</td>
</tr>
<tr>
<td>ELE391</td>
<td>Mathematical Methods in Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ELE302</td>
<td>Electrical Circuits II</td>
<td>3</td>
</tr>
<tr>
<td>ELE303</td>
<td>Electrical Circuits II Lab</td>
<td>1</td>
</tr>
<tr>
<td>HLT201</td>
<td>Basic Health</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring Semester (16 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>———</td>
<td>LAC Elective</td>
<td>3</td>
</tr>
<tr>
<td>ELE401</td>
<td>Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ELE402</td>
<td>Electronics I Lab</td>
<td>1</td>
</tr>
<tr>
<td>COE323</td>
<td>Microprocessors</td>
<td>3</td>
</tr>
<tr>
<td>ELE411</td>
<td>Electromagnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>ELE430</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module I (2 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE301</td>
<td>Professional Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PED—</td>
<td>Physical Education</td>
<td>1</td>
</tr>
<tr>
<td>GNE331</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Year III (40 Credits)</td>
<td>Year IV (31 Credits)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Fall Semester (17 credits)</td>
<td>Fall Semester (15 credits)</td>
<td></td>
</tr>
<tr>
<td>ELE493</td>
<td>Electromagnetic Waves</td>
<td>ELE413</td>
</tr>
<tr>
<td></td>
<td>Professionalism</td>
<td></td>
</tr>
<tr>
<td>ELE537</td>
<td>Communication Systems</td>
<td>ELE537</td>
</tr>
<tr>
<td>ELE442</td>
<td>Control Systems</td>
<td></td>
</tr>
<tr>
<td>ELE443</td>
<td>Control Systems Lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microprocessors Lab</td>
<td></td>
</tr>
<tr>
<td>Spring Semester (16 credits)</td>
<td>Spring Semester (16 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECE Track X2</td>
<td>ELE492</td>
</tr>
<tr>
<td></td>
<td>ELE Track X2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Elective</td>
<td></td>
</tr>
<tr>
<td>ELE420</td>
<td>Electro mechanics</td>
<td></td>
</tr>
<tr>
<td>ELE538</td>
<td>Noise in Communication Systems</td>
<td></td>
</tr>
<tr>
<td>ELE540</td>
<td>Communications Systems Lab</td>
<td></td>
</tr>
<tr>
<td>INE320</td>
<td>Engineering Economy I</td>
<td></td>
</tr>
<tr>
<td>ELE492</td>
<td>Fundamentals in ECE</td>
<td></td>
</tr>
<tr>
<td>Summer Module II (6 credits)</td>
<td>Summer Module II (6 credits)</td>
<td></td>
</tr>
<tr>
<td>COE498</td>
<td>Professional Experience</td>
<td></td>
</tr>
</tbody>
</table>

Technical Electives

ECE technical electives for both COE and ELE programs are grouped into four different tracks. The four tracks and their respective courses are:

Communication & Networks:
- ELE535 Information & Coding Theory
- ELE531 Optical Fiber Communication
- ELE538 Noise in Communications
- ELE539 Telecommunications
- COE431 Computer Networks
- COE535 Optical Networks

Computer Hardware & Systems:
- COE527 VLSI Design
- COE521 Embedded Systems
- COE522 High Performance Computer Architecture
- COE423 Computer Architecture

Systems Engineering:
- ELE548 Linear Systems
- ELE553 Reliability
- ELE525 Faulted Power Systems
- ELE526 Renewable Energy Sources
- ELE501 Microelectronics
Theory & Algorithms:
- COE418 Database Systems
- COE414 Operating Systems
- COE555 Queuing Theory
- ELE535 Information & Coding Theory
- ELE557 Sim. of Electronics Cir.

ENGINEERING ELECTIVES
Engineering electives can be any of the following courses:
- INE307 Deterministic OR models
- INE308 Stochastic OR models
- INE428 Project Management
- INE529 Project Contracting
- INE527 Project Scheduling
- INE350 Simulation
- INE402 Optimization
- INE506 Decision Analysis
- MEE401 Energy Systems (2 credits)
- MEE590 Energy Audit (2 credits)
- MEE599 Introduction to Mechatronics
- CIE520 Solid Waste Management
- CIE521 Hydrology
- CIE522 Environmental Impact Assessment
- CIE525 Environmental Policy and Management
- CIE526 Environmental Remediation
- CIE584 Quality Management Systems
- CIE585 Risk and Natural Hazard Management
- CIE723 Water Resources Planning and Management
- CIE733 Groundwater Engineering
- CIE788 GIS and Remote Sensing

Except for ELE305, ELE391 and COE312, any COE/ELE course can be considered as a technical elective as long as it is not a required course. COE599/ELE599 could be taken more than once for credit when topics differ.

COURSE DESCRIPTIONS

ELE201 Electrical Circuits I [3-0, 3 cr.]
This course covers the resistors, capacitors and inductors, voltage and current sources, operational amplifiers, voltage and current laws, node and mesh analysis, network theorems, power and energy, DC and sinusoidal excitation of circuits, and computer-aided circuit simulation (SPICE).
Prerequisites: PHY201 Electricity and Magnetism.

ELE302 Electrical Circuits II [3-0, 3 cr.]
This course covers frequency-domain response of circuits; transfer functions; transformers, three-phase circuits, resonant circuits and filter designs; time-domain response of circuits; step, impulse and ramp responses; linearity and time invariance; input-output descriptions of circuits; parameter representation of two-ports networks; computer-aided circuit simulation (SPICE).
Pre-requisites: ELE201 Electrical Circuits I and MTH304 Differential Equations.

ELE303 Electrical Circuits II Lab [0-3, 1 cr.]
This is a lab course with experiments in Electrical Circuits II.
Concurrent with ELE302 Electrical Circuits II.

ELE305 Introduction to Electrical Engineering [3-0, 3 cr.]
This course introduces the concepts of resistors, capacitors and inductors, voltage and current sources, operational amplifiers, voltage and current laws, node and mesh analysis, network theorems, power and energy, three-phase circuits, logic circuits, and binary representations.

ELE391 Mathematical Methods In Electrical Engineering [3-0 3 cr.]
This course introduces foundation knowledge of complex variables and linear algebra with applications to electrical engineering. Topics covered are vector spaces, subspaces, linear dependence/independence, basis; linear transformations and Eigen structure analysis; matrix representations of linear electrical systems; analytic functions of complex variables and contour integrals; Cauchy integral formula.
Prerequisites: MTH304 Differential Equations.
ELE401 Electronics I [3-0, 3 cr.]
This course covers Microelectronics devices and their applications using latest semiconductors technologies. These devises range from Normal Diodes, ZENER iDodes, LEDs, Photodiodes, BJTs to MOSFETS. Their applications include the design of regulators, rectifiers, clammers, operational amplifiers and digital integrated circuitry.
Prerequisites: ELE302 Electrical Circuits II.

ELE402 Electronics I Lab [0-3, 1 cr.]
The laboratory experiments are hands-on implementation of the devices and circuitry presented in the course as well as circuit simulation using the SPICE software.
Concurrent with ELE401 Electronics I.

ELE411 Electromagnetic Fields [3-0, 3 cr.]
Fundamental concepts of the electromagnetic model, vector analysis, static electric fields, static magnetic fields, steady electric currents, Maxwell’s equations, Coulomb’s law, Gauss’s law, Biot-Savart law, Faraday’s law, Poisson’s and Laplace’s equations, Joule’s law, capacitance calculations, inductance calculations, resistance calculations.
Prerequisites: ELE201 Electrical Circuits I, ELE391 Mathematical Methods in Electrical Engineering, COE321 Logic Design.

ELE413 Electromagnetic Waves [3-0, 3 cr.]
Fundamental concepts of electromagnetic waves, Maxwell’s equations, propagation of plane electromagnetic waves, theory and application of transmission lines, waveguides, antennas.
Prerequisits: ELE302 Electrical Circuits II and ELE411 Electromagnetic Fields.

ELE420 Electromechanics [3-0, 3 cr.]
This course covers three-phase circuit concepts; magnetic circuits; energy storage and conversion; force and emf production; forces and torques of electric origin in electromagnetic systems; power transformers and autotransformers; principles of electric ac machines; synchronous generators; three-phase and single-phase induction motors.
Prerequisites: ELE411 Electromagnetic Fields.

ELE422 Power Systems [3-0, 3 cr.]
This course provides students with a working knowledge of power system problems and computer techniques to solve some of these problems. Topics include: review of three-phase analysis, complex power, per-unit system, synchronous machines, transformers, autotransformers, and regulating transformers; calculation of transmission line parameters, evaluation of steady state operation of transmission lines; reactive power compensation; line capability; power flow analysis using Gauss-Seidel and Newton-Raphson methods.
Prerequisites: ELE420 Electromechanics.

ELE423 Power Systems Lab [0-3, 1 cr.]
This course covers the following experiments to study various aspects of electric machines and power systems: fundamentals of electrical power technology; alternating currents; power and impedance in ac circuits; three-phase circuits; single-phase and three-phase transformers; fundamentals of rotating machines; dc motors and generators; ac induction motors; three-phase synchronous generators and motors.
Concurrent with ELE422 Power Systems.

ELE430 Signals and Systems [3-0, 3 cr.]
Signal and system modeling concepts; system modeling and analysis in time domain; the Fourier series; the Fourier transform and its applications; the Laplace transformation and its applications; discrete-time signals and systems; z-transform; analysis and design of digital filters; DFT and FFT.
Prerequisites: ELE302 Electrical Circuits II.

ELE442 Control Systems [3-0, 3 cr.]
This course covers modeling and dynamical systems, transient-response analysis, response of control systems, root locus analysis, and modern control (state space).
Prerequisites: ELE430 Signals and Systems.
ELE443 Control Systems Lab [0-3, 1 cr.]
Laboratory experiments in Control Systems. This course introduces students to the implementation of PID-controllers and two-step controllers, first order delay as well as third order delay, such implementation are done using educational PID boards and DC servo boards. Experimentations and analysis use Industrial standard oscilloscopes, and data-acquisition boards interfaced via SIMULINK/MATLAB.
Concurrent with ELE442 Control Systems.

ELE492 FUNDAMENTALS IN ECE [0-3, 1 cr.]
This course consolidates the concepts covered in the first two years of the program in mathematics, computers, and engineering with emphasis on their practical applications in ECE. It also provides an accurate and comprehensive assessment for these concepts by exposing the students to professional engineering and FE-style examinations.
Prerequisites: ELE401 Electronics I, ELE430 Signals and Systems, GNE 331 Probability and Statistics, COE323 Microprocessors.

ELE493 PROFESSIONALISM IN ENGINEERING [3-0, 3 credits]
Overview of the nature and scope of engineering profession. Working on a multidisciplinary team environment; professional and ethical responsibility; the impact of engineering solutions in a global and societal context; contemporary issues; and life-long learning.
Prerequisites: Third year standing required.

ELE498 Professional Experience [0-6, 6 cr.]
This course entails a professional experience through training in the execution of real life engineering projects.
Prerequisites: Fifth-year standing and the consent of the instructor.

ELE501 Microelectronics [3-0, 3 cr.]
This course provides students with advanced knowledge of integrated circuit theory. Topics include: Single-stage integrated circuit amplifiers; differential and multi-stage amplifiers, integrated-circuits biasing techniques; non-ideal characteristics; frequency response; feedback amplifiers; output stages; digital CMOS logic circuits.
Prerequisites: ELE401 Electronics I.

ELE525 Faulted Power System [3-0, 3 cr.]
This course provides students with advanced knowledge of power system evaluation techniques. Topics include: economic load dispatch with generation limits and line losses; impedance model; three-phase symmetrical faults; symmetrical components; and unsymmetrical faults analysis.
Prerequisites: ELE422 Power Systems.

ELE526, Renewable Energy Sources [3-0, 3 cr.]
This course covers the principles of emerging renewable technologies, including solar, wind, biomass, geothermal, hydropower and other energy sources. A premise of the course is that a renewable energy technology must both be technically feasible and economically viable. At the conclusion of the course, students will have a solid technical and economic understanding of these energy technologies.
Prerequisites: Consent of instructor

ELE528 Electrification of Plants [3-0, 3 cr.]
Electrical Design, software and calculation notes complete including Lighting, Power and Low current systems design.
Prerequisites: ELE422 Power Systems.

ELE531 Optical Fiber Communications [3-0, 3 cr.]
Basic principles of point-to-point optical fiber communications, waveguiding and signal degradation in optical fibers, optical sources, photodetectors, WDM components, dimensioning of fiber links for analog and digital transmissions, performance of digital optical communication systems in the presence of noise.
Prerequisites: GNE331 Probability and Statistics.

ELE535 Information and Coding Theory [3-0, 3 cr.]
Information theory applied to communication systems. It covers digital signals and streams, information measures, data compression, error-correcting codes,
block codes, convolutional codes, Viterbi algorithm, noise, maximum-entropy, Markov chains, channel capacity formalism and Shannon’s theorem.
Prerequisites: GNE331 Probability and Statistics.

ELE537 Communication Systems [3-o, 3 cr.]
Basic principles of point-to-point communication link design and analysis, introduction to the theory and principles of modern communication systems, overview of the currently used analog and digital communication techniques and their relative advantages and disadvantages, analog modulation and demodulation, component parts used in analog and digital transceivers.
Prerequisites: ELE430 Signals and Systems, GNE331 Probability and Statistics.

ELE538 Noise in Communication Systems [3-o, 3 cr.]
This course covers physical noise sources, noise calculations in communication systems, stochastic processes, and communication systems performance in the presence of noise.
Prerequisites: ELE537 Communication Systems.

ELE539 Telecommunication Systems [3-o, 3 cr.]
This course covers spread spectrum and data communications, microwave and satellite links, optical fiber, mobile radio systems, the evolution of mobile radio communications including 2G, 2.5G and 3G, cellular concept, and mobile radio propagation including large-scale path loss.
Prerequisites: ELE537 Communication Systems.

ELE540 Communication Systems Lab [0-3, 1 cr.]
This is a lab course with experiments in communication systems. The experiments implement the modulation and the demodulation techniques acquired in the communication system course through modulation and demodulation boards and through MATLAB.
Prerequisites: ELE537 Communication Systems.

ELE557 Simulation of Electronic Circuits [3-o, 3 cr.]
This course covers the principles of efficient electronic circuit simulation using numerical methods and techniques. Topics include the formulation of network equations, dc analysis, frequency domain analysis, simulation of nonlinear networks, transient analysis, sensitivity analysis, and model order reduction. The simulation of specialized circuits is also considered, including the analysis of radio frequency circuits and high-speed interconnects. In addition, students will learn how to implement circuit simulation methods using mathematical software tools.
Prerequisites: ELE401 Electronics I.

ELE591 Capstone Design Project I [3-o, 3 cr.]
The course is devoted to the solution of open-ended engineering design projects with functional specifications and realistic constraints. This project provides a culminating major design experience that is concluded by a written report and an oral presentation.
Prerequisites: Fifth-year standing.

ELE592 Project II [3-o, 3 cr.]
This course is an advanced engineering project using acquired technical knowledge, formal report, and presentation.
Pre-requisites: Fifth year standing and instructor’s consent.

ELE593 ELEapplication [3-o, 3 cr.]
This course allows ELEgraduates to acquire the technical skills that are required to match a specific industry-related need. In particular, it exposes students to the techniques, which can improve their chances of gaining employment in jobs aligned with the considered need. This exposure is reinforced by an extensive hands-on experience that is brought into classroom through small-scale projects pertaining to problems inspired from the identified need.
Prerequisites: Fourth Year standing.

ELE599 Topics in Electrical Engineering [1-3, 3 cr.]
This course covers the treatment of new development in various areas of Electrical Engineering.
Prerequisites: Final-year standing and instructor’s consent.
Master of Science (M.S.) in Computer Engineering

The Graduate Computer Engineering (COE) and the Computer and Communication Engineering (CCE) programs strive to prepare students for further graduate studies, as well as for a possible career in the industry. Two important objectives are addressed:

• A sufficient level of breadth that guarantees general knowledge in the main areas of COE/CCE. These areas were chosen carefully to span: Hardware and Systems, Software and Theory, Communication Systems, and Systems Engineering.

• A sufficient level of depth that will allow students some degree of specialization. Therefore, students will have the requisite background needed to pursue a higher graduate education and perform research. In addition, the curriculum provides a good practical experience by allowing students to choose from a variety of practical and implementation-oriented courses.

MISSION
The mission of the graduate program in Computer Engineering is to train graduate students in an active research environment, and to equip them with the latest tools of research.

GOALS OF CURRICULUM

Educational Objectives
The purpose of the graduate program in Computer Engineering is to:

• Aid students in creatively using their background in basic sciences and mathematics, as well as their expertise in certain areas of computer engineering;

• Assist students in innovatively applying the design process to complex engineering problems, and innovatively using computers as a tool for simulation, analysis, design and computing;

• Provide a creative, critical and model-based thinking and problem-solving approach;

• Offer students the opportunity to do research on important scientific and technical problems, to disseminate knowledge, and to publish research findings.

Student Outcomes
Graduates of the graduate program in Computer Engineering will acquire the following skills:

1. The ability to demonstrate a mastery of the methodology and the techniques specific to the field of study;

2. The ability to communicate both orally and in writing at a high level of proficiency in the field of study;

3. The ability to conduct research or to develop other forms of creative project work;

4. The ability to function as a professional in the discipline.

ADMISSION REQUIREMENTS
Applicants for admission to this program must have a Bachelor of Science in Engineering, or a Bachelor of Engineering degree from a recognized college or university, with a minimum general Grade Point Average (GPA) equivalent to 2.75 on a 4-point scale, or 2.75 in the major. If the bachelor’s degree is not in the field to be pursued, and/or if the GPA is less than 2.75, the applicant may be admitted as “special,” as described in the Academic Rules and Regulations for graduate programs.
The GRE general exam is required of all applicants (GRE subject exams are not required). All applicants must submit scores for the GRE general exam (includes verbal reasoning, quantitative reasoning, and analytical writing scores). Your GRE test scores are an important part of your application. GRE test scores that are more than five years old will not be accepted.

The admissions committee considers several factors when making admission decisions, including your academic performance at prior institutions (grades, rankings, and GPAs) and your GRE test score. The rate of graduate assistantship (GA), when requested, is directly related to your GPA and GRE scores. Letters of recommendation are optional; however, three letters are recommended, two of which to be completed by faculty who are familiar with your academic performance.

CURRICULUM

EMPHASIS AREAS
The course work for the master’s program in computer engineering can be grouped into the following two emphasis areas:

- Computer Engineering
- Computer and Communication Engineering

Computer Engineering (COE) focuses on the design, analysis and application of computers, and on their applications as components of systems. Computer and Communication Engineering (CCE) focuses on the design, analysis and application of communication and telecommunication systems as well as systems in computer engineering.

CREDIT REQUIREMENTS
The graduate program in COE, with emphasis in COE or CCE, consists of 30 credit hours, and leads to a Master of Science in Computer Engineering, with emphasis in COE or CCE. Students with a Bachelor of Engineering degree who are pursuing an M.S. degree may transfer up to six credits from their B.E. degree, provided that the transferred credits correspond to courses labeled graduate courses, and the student has scored at least a B on each of these courses.

GRADUATE COURSE REQUIREMENTS
The graduate courses have been grouped into the following four concentration areas:

- Hardware and Systems
- Software and Theory
- Communication Systems
- Systems Engineering

The proposed graduate curricula for each of the two programs are based on the breadth and depth requirements. The breadth requirements consist of six courses (18 credit hours) for both programs.

In order to satisfy the requirements for the M.S. in Computer Engineering with emphasis on:

- Computer Engineering, the student is required to complete at least:
 1. Four courses from Hardware & Systems;
 2. One course from Software and Theory; and
 3. One course from either Communication Systems or Systems Engineering.

- Computer and Communications Engineering, the student is required to complete at least:
 1. Two courses from Hardware & Systems;
 2. One course from Software & Theory;
 3. Two courses from Communication Systems; and
 4. One course from Systems Engineering.

The remaining courses may be chosen, without restriction, from any of the four concentration areas, and counted toward the depth requirement. It is recommended that these courses be chosen in the thesis area, in consultation with the student’s advisor.

The following is a list of selected courses (three credits each) in the four concentration areas. (Other topic courses might be offered in these areas.)
Hardware & Systems

Hardware

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE725</td>
<td>VLSI Design</td>
<td>3</td>
</tr>
<tr>
<td>COE722</td>
<td>Rapid Prototyping</td>
<td>3</td>
</tr>
<tr>
<td>COE726</td>
<td>VLSI Design Automation</td>
<td>3</td>
</tr>
<tr>
<td>COE728</td>
<td>ULSI Testing</td>
<td>3</td>
</tr>
<tr>
<td>COE721</td>
<td>Embedded Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE533</td>
<td>Advanced Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>COE711</td>
<td>Transactions Processing Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE712</td>
<td>Distributed Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE723</td>
<td>High Performance Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>COE732</td>
<td>Networks Security</td>
<td>3</td>
</tr>
<tr>
<td>COE733</td>
<td>Optical Networks</td>
<td>3</td>
</tr>
</tbody>
</table>

Software & Theory

Software

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE714</td>
<td>Advanced Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COE715</td>
<td>Object-Oriented Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COE716</td>
<td>Knowledge-Based Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE717</td>
<td>Parallel Programming and Cluster Workstations</td>
<td>3</td>
</tr>
<tr>
<td>COE718</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>COE741</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
</tbody>
</table>

Theory and Algorithms

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE742</td>
<td>Neural Networks</td>
<td>3</td>
</tr>
<tr>
<td>COE752</td>
<td>Design & Analysis of Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COE753</td>
<td>Heuristic Optimization</td>
<td>3</td>
</tr>
<tr>
<td>COE754</td>
<td>Automata Theory & Formal Languages</td>
<td>3</td>
</tr>
<tr>
<td>COE755</td>
<td>Queuing Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Communication Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE735</td>
<td>Information & Coding Theory</td>
<td>3</td>
</tr>
<tr>
<td>ELE757</td>
<td>Simulation of Electronic Circ.</td>
<td>3</td>
</tr>
</tbody>
</table>

Systems Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE731</td>
<td>Optical Fiber Communications</td>
<td>3</td>
</tr>
<tr>
<td>ELE732</td>
<td>Wireless Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELE733</td>
<td>Mobile Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>ELE735</td>
<td>Information and Coding Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

B.E. degree holders who are pursuing an M.S. degree may transfer the following courses (provided the student has scored at least a B): ELE538 Noise in Communication Systems and ELE539 Telecommunication Systems.

Other Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>——</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>COE898</td>
<td>Project</td>
<td>3</td>
</tr>
<tr>
<td>COE899</td>
<td>Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Topics Courses

When offered, advanced topic courses can count toward the breadth or depth requirements, upon the approval of the student’s advisor. Topic courses are three-credit courses, and might not be offered every year.

Project Courses

A three-credit project course, in any of the concentration areas, can also be considered as a regular course, only for the non-thesis option. The student is limited to at most one project course.
Remedial Courses
Remedial courses may be required from students seeking a degree not in their undergraduate field of specialization.

COURSE DESCRIPTIONS

COE711 Transactions Processing Systems [3-0, 3 cr.]
This course covers the theoretical foundations underlying commitment protocols that form the basis of transaction processing techniques. Transaction processing systems have lots of moving parts such as: client-side forms, web-servers, mid-tier application servers, and back-end databases. Although these components are distributed across multiple processes, these processes share state, and use specialized communication protocols and synchronization techniques. This course explains how these systems are constructed. Topics include the transaction abstraction, application servers, transactional communications, persistent queuing and workflow, software fault tolerance, concurrency control algorithms, database recovery algorithms, distributed transactions, two-phase commit, and data replication.
Prerequisites: COE312 Data Structures and Algorithms.

COE712 Distributed Systems [3-0, 3 cr.]
This course is an introduction to distributed systems, distributed system models, network architecture and protocols, inter process communication, client-server models, group communication, TCP sockets, remote procedure calls, distributed objects and remote invocation, distributed file systems, file service architecture, name services, directory and discovery services, distributed synchronization and coordination, and distributed multimedia systems.

COE714 Advanced Software Engineering [3-0, 3 cr.]
This course covers the techniques for the construction of reliable and cost-effective large-scale software. Topics include process models requirements analysis and specification, design methods and principles, testing methodologies, software maintenance, software metrics, and software management and quality.

COE715 Object-Oriented Software Engineering [3-0, 3 cr.]
This course introduces key concepts in object-oriented programming and software engineering. Topics covered include data abstraction and encapsulation, polymorphism, object-oriented analysis and design methods, object-oriented programming, templates, design patterns, an introduction to UML, documentation, debugging, metrics, formal specification, user-interfaces, concurrent and distributed objects, process and project management issues.
Prerequisites: COE312 Data Structures and Algorithms.

COE716 Knowledge-Based Systems [3-0, 3 cr.]
This course covers the knowledge representation, search techniques, logical reasoning, and language understanding. The course is an introduction to the methodology of design and the implementation of expert systems. The course emphasizes the techniques for representing and organizing domain and control knowledge, as opposed to the theory and implementation of inference engines.
Prerequisites: COE312 Data Structures and Algorithms.

COE717 Parallel Programming and Cluster Workstations [3-0, 3 cr.]
This course covers a parallel computing, using groups of computers to solve problems at a greater computational speed. Topics include parallel computing techniques and algorithms, including divide and conquer, pipelined computations, genetic algorithms and simulated annealing. Topics also include synchronous and asynchronous computations, load balancing, shared memory, distributed memory, and distributed shared memory. Use of the message-passing method of parallel computing, and use the standard parallel computing tools such as PVM and MPI.
Prerequisites: COE312 Data Structures and Algorithms.

COE718 Computer Graphics [3-0, 3 cr.]
This course is an introduction to computer graphics algorithms, programming methods and applications, with a focus on the fundamentals of two and three dimensional raster graphics, scan-conversion, clipping, geometric transforma-
tions, computational geometry, computer-human interfaces, animation, and visual realism.

Prerequisites: CSC312 Data Structures and Algorithms.

COE721 Embedded Systems [3-o, 3 cr.]
This course provides an introduction to the design of embedded systems including both their hardware and software. Topics ranging from simple circuit design to computer architecture will be discussed. Different types of processors will be presented along with interfacing to memories, I/O devices, and other processors. The 68HC12 or PIC microcontrollers will be used as an example processor for assignments and the course project.

Prerequisites: Consent of instructor.

COE722 Rapid Prototyping [3-o, 3 cr.]
This course covers the principles and techniques for rapid prototyping of electronic systems, top-down design methodology, techniques, technologies, and tradeoffs (design time–cost–speed–power–area) as applied to the entire digital electronic system design hierarchy (system–module–chip–circuit), high-level system specification, and simulation techniques, synthesis and schematic capture alternatives to hardware realization.

Prerequisites: COE312 Reconfigurable Computing.

COE723 High Performance Computer Architecture [3-o, 3 cr.]
This course covers topics in advanced pipeline techniques and scheduling, instruction level parallelism, and dynamic scheduling. Advanced processor design techniques are introduced such as superscalar, super-pipelined, VLIW, multiprocessing, multithreading, and supercomputing architectures. In addition, relationships between high-performance computing and interconnection networks, embedded systems, advanced storage systems, and cloud computing examples are established.

Prerequisites: COE423 Computer Architecture or the consent of the instructor.

COE725 VLSI Design [3-o, 3 cr.]
This course covers the VLSI design, circuits layout, timing, delay, power estimation, use of layout editors and circuit simulation tools, synthesis, and an introduction to electronic design automation.

Prerequisites: COE312 Logic Design.

COE726 VLSI Design Automation [3-o, 3 cr.]
This course covers the algorithms and methodologies for the synthesis, analysis and verification of digital systems, silicon compilation, high-level synthesis, logic synthesis, and layout synthesis, hardware description languages and their use in the synthesis process, fault simulation and coverage analysis, and the extensive use of electronic design automation tools.

Prerequisites: COE312 Logic Design.

COE728 ULSI Testing [3-o, 3 cr.]
This course covers the problems of testing of Ultra Large Scale Integrated Circuits (ULSI), the design of circuits for testability, the design of built-in self-testing circuits, and the use of the IEEE Boundary Scan Standards. Topics include introduction to the testing process, fault modeling and detection, logic and fault simulation, testability measures, test generation for combinational circuits, test generation for sequential circuits, design for testability, built-in self-test, delay testing, current testing, ATPG-based logic synthesis, system test, and core-based design, and testing a system-on-a-chip (SOC).

Prerequisites: COE312 Logic Design.

COE732 Networks Security [3-o, 3 cr.]
This course is an introduction to network security, including developing an understanding of security engineering, cryptography, mechanisms to protect private communication over public network, and techniques to protect networked computer systems. This course considers the technical, operational and managerial issues of computer systems and network security in an operational environment. The course will address the threats to computer security, including schemes for breaking security, and techniques for detecting and preventing security violations. Emphasis will be on instituting safeguards, examining the
different types of security systems, and applying the appropriate level of security for the perceived risk.

Prerequisites: COE431 Computer Networks.

COE733 Optical Networks [3-0, 3 cr.]
This course covers the fundamentals of optical networking. In particular, it touches on the following topics: the building blocks of optical wavelength division multiplexed networks, wavelength division multiplexing (WDM) and its enabling technologies, WDM-based access and metro optical network architectures, wavelength-routed optical wavelength division multiplexed networks used for wide area coverage, optical burst switched networks, and optical packet switched networks.

Prerequisites: Instructor’s consent.

COE741 Artificial Intelligence [3-0, 3 cr.]
This course is an introduction to artificial intelligence concepts, heuristic search, clause form logic, knowledge representation, reasoning and inference, an overview of the computer vision, planning, natural language. Lisp, and Prolog. Subjects covered may include unification and resolution in first order logic, graph search algorithms, planning, game playing, heuristic classifiers, knowledge engineering, and uncertainty management.

Prerequisites: COE312 Data Structures and Algorithms.

COE742 Neural Networks [3-0, 3 cr.]
This course covers the construction and function of neurons, synaptic transmission and plasticity, the functional organization of the neural system, modeling and simulation of real neural networks, the most well-known ANN-architectures and algorithms for learning, methods for unsupervised learning, principles for neural network representation, hardware architectures for neural computations (neural chips and neural computers), examples of technical applications of ANN in areas like pattern recognition, combinatorial optimizations, diagnosis, and robotics.

Prerequisites: Instructor’s consent.

COE752 Design and Analysis of Algorithms [3-0, 3 cr.]
This course covers the time and space complexity of algorithms. It looks at the models of computation, the techniques for efficient algorithm design, and the effect of data structure choice on the efficiency of an algorithm, as well as the divide and conquer techniques, greedy methods, dynamic programming, amortized analysis, graph and network algorithms, NP-completeness, and selected advanced algorithms.

Prerequisites: Instructor’s consent.

COE753 Heuristic Optimization [3-0, 3 cr.]
This course covers the basic heuristic optimization techniques in computing. This course describes a variety of heuristic search methods including serial simulated annealing, Tabu search, genetic algorithms, ant algorithms, Derandomized evolution strategy, and random walk. Algorithms will be described in serial as well as in parallel fashion. Students can select application projects from a range of application areas. The advantages and disadvantages of heuristic search methods, for both serial and parallel computation, are discussed in comparison to other optimization algorithms.

COE754 Automata Theory and Formal Languages [3-0, 3 cr.]
This course covers the Finite Automata and regular expressions, context-free grammars, pushdown Automata, properties of context-free languages, Turing machines, undecidability, computational complexity, and P and NP problems.

Prerequisites: Instructor’s consent.

COE755 Queuing Theory [3-0, 3 cr.]
This course introduces two modeling techniques, namely simulation and queuing modeling techniques. The following topics are discussed in this regard: single queue Markovian systems, semi-Markovian queuing systems, open queueing networks, closed queueing networks, pseudo-random number generation, estimation techniques for analyzing endogenously created data, and validation of a simulation design.

Prerequisites: Instructor’s consent.
COE898 Project [3-o, 3 cr.]
This design course integrates various areas of electrical and computer engineering into a real design project. Design reviews, and a final oral presentation with a written report, are required.
Prerequisites: 15 graduate credits, and the consent of the instructor.

COE899 Thesis [6-o, 6 cr.]
This is a master’s thesis research course under the direction of a faculty member.

ELE544 Feedback Control [3-o, 3 cr.]
This course covers the frequency-response analysis, control systems design by frequency response, PID controls, and an introduction to robust control.
Prerequisites: ELE442 Control Systems.

ELE724 Faulted Power System [3-o, 3 cr.]
This course covers the techniques and mathematical tools needed to analyze faulted power systems. Topics include impedance model, analysis of three-phase symmetrical faults, symmetrical components, unsymmetrical faults, and power systems stability. Students will be challenged to draw upon a background of knowledge from earlier studies to explore these topics in a comprehensive manner.
Prerequisite: ELE422 Power Systems and instructor’s consent.

ELE726 Renewable Energy Sources [3-o, 3 cr.]
This course covers the principles of emerging renewable technologies, including solar, wind, biomass, geothermal, hydropower and other energy sources. A premise of the course is that a renewable energy technology must both be technically feasible and economically viable. At the conclusion of the course, students will have a solid technical and economic understanding of these energy technologies.
Prerequisites: Instructor’s consent.

ELE731 Optical Fiber Communications [3-o, 3 cr.]
This course covers the wave guiding in optical fibers, fiber losses including attenuation, dispersion and nonlinearities, noise, receiver and transmitter design, link analysis, introduction to erbium-doped amplifiers, and time-and wavelength-division-multiplexed networks.
Prerequisites: Instructor’s consent.

ELE732 Wireless Communication Systems [3-o, 3 cr.]
This course covers the evolution of the mobile radio communications including 2G, 2.5G and 3G, cellular concept, and the mobile radio propagation, including large-scale path loss, and small-scale fading and multipath.
Prerequisites: ELE537 Communication Systems.

ELE733 Mobile Communication Systems [3-o, 3 cr.]
This course covers the modulation techniques for mobile radio, equalization, diversity, and channel coding, speech coding, multiple access techniques for wireless communications, wireless networking, and wireless systems and standards.
Prerequisites: ELE732 Wireless Communication Systems or Telecommunication Systems.

ELE734 Optical Fiber Communications [3-o, 3 cr.]
Basic principles of point-to-point optical fiber communications, wave guiding and signal degradation in optical fibers, optical sources, photo detectors, WDM components, dimensioning of fiber links for analog and digital transmissions, performance of digital optical communication systems in the presence of noise.
Prerequisites: Consent of instructor.

ELE735 Information and Coding Theory [3-o, 3 cr.]
Information theory applied to communication systems. It covers digital signals and streams, information measures, data compression, error-correcting codes, block codes, convolutional codes, Viterbi algorithm, noise, maximum-entropy, Markov chains, channel capacity formalism and Shannon’s theorem.
Prerequisites: Instructor’s consent.
ELE742 Linear Systems [3-0, 3 cr.]
This course covers the canonical realization of transfer functions, state observability and controllability, state feedback and asymptotic observers, reduced order observers, and regulator design.
Prerequisites: ELE442 Control Systems.

ELE753 Reliability [3-0, 3 cr.]
This course covers the basic reliability concepts, elements of probability and statistical theory, application of important distributions, reliability in series, parallel and complex systems, application of Markov chains in the evaluation of repairable system reliability, application of Markov processes for reliability evaluation of complex systems, and the utilization of MonteCarlo simulation in basic system reliability evaluation.
Prerequisites: GNE331 Probability and Statistics.

Special Topics [3-0, 3 cr.]
This course covers topics of current interest selected by the faculty.
Prerequisites: The consent of the instructor.

ELE757 Simulation of Electronic Circuits [3-0, 3 cr.]
This course covers the principles of efficient electronic circuit simulation using numerical methods and techniques. Topics include the formulation of network equations, dc analysis, frequency domain analysis, simulation of nonlinear networks, transient analysis, sensitivity analysis and model order reduction. The simulation of specialized circuits is also considered, including the analysis of radio frequency circuits and high-speed interconnects. In addition, students will learn how to implement circuit simulation methods using mathematical software tools.
Prerequisites: ELE401 Electronics I.

Department of Industrial & Mechanical Engineering

PROGRAMS/DEGREES AVAILABLE:
• Bachelor of Engineering (B.E.) in Industrial Engineering
• Bachelor of Engineering (B.E.) in Mechanical Engineering
 Minor in Packaging
• Master of Science (M.S.) in Industrial Engineering and Engineering Management.
The Bachelor of Engineering degree program in Industrial Engineering is accredited by the Engineering Accreditation Commission of ABET (www.abet.org).

Industrial growth has created unusual opportunities for industrial engineers in Lebanon and the region. Automation, and the emphasis on increased productivity, coupled with higher complexity in systems engineering, are resulting in a greater demand for engineering graduates with a broad interdisciplinary background. This program prepares students for industrial practice in such areas as: product design, process design, plant operation, production control, quality control, facilities planning, work system analysis and evaluation, and economic analysis of operational systems.

Students are trained to apply engineering principles in solving problems encountered in environments and situations where a quantitative basis for decision-making is needed. Six credits of professional experience are also included in the summer of the third year, to give students an opportunity to integrate classroom instruction with practical work experience as a part of their academic program.

The industrial engineering program requires the completion of 150 semester hours. While the program is credit-based, a typical schedule over a four-year period, including summer modules, is listed below. Students may opt to take these courses over a longer period of time.

MISSION

The Industrial Engineering program strives to support the mission of the school by providing students with a solid and contemporary industrial engineering curriculum and a broad education that prepares them for successful careers as industrial engineers in a globalized world as well as graduate studies.

GOALS OF CURRICULUM

Program Educational Objectives

Within a few years of graduation, the graduates of the industrial engineering program will:

1. Lead successful careers in a wide range of Industrial Engineering area or succeed in graduate studies;
2. Be agents of change in dynamic environments;
3. Establish themselves as responsible professionals and work successfully as members of a multi-disciplinary team.

Student Outcomes

The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:

1. An ability to apply knowledge of mathematics, science and engineering;
2. An ability to design and conduct experiments, as well as to analyze and interpret data;
3. An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
4. An ability to function on multidisciplinary teams;
5. An ability to identify, formulate and solve engineering problems;
6. An understanding of one’s professional and ethical responsibility;
7. An Ability to communicate effectively;
8. A broad education necessary to understand the impact of engineering
solutions in a global, economic, environmental, and societal context;
9. A recognition of the need and the ability to engage in lifelong learning;
10. A knowledge of contemporary issues;
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

CURRICULUM

YEAR I (42 CREDITS)

<table>
<thead>
<tr>
<th>Fall Semester (16 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COE212</td>
<td>Engineering programming</td>
</tr>
<tr>
<td>ENG202</td>
<td>Sophomore Rhetoric</td>
</tr>
<tr>
<td>GNE 212</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>MEE 211</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>MTH201</td>
<td>Calculus III</td>
</tr>
<tr>
<td>——</td>
<td>LAC Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester (16 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA 201</td>
<td>Appreciation of Arabic Lit.</td>
</tr>
<tr>
<td>ELE305</td>
<td>Introduction to Electrical Eng.</td>
</tr>
<tr>
<td>ETH 201</td>
<td>Moral Reasoning</td>
</tr>
<tr>
<td>MTH304</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>MTH206</td>
<td>Calculus IV</td>
</tr>
<tr>
<td>——</td>
<td>LAC Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Module II (6 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE333</td>
<td>Engineering Analysis I</td>
</tr>
<tr>
<td>——</td>
<td>LAC Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Module II (4 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE331</td>
<td>Probability and Statistics</td>
</tr>
<tr>
<td>PED2--</td>
<td>Physical Education</td>
</tr>
</tbody>
</table>

YEAR II (40 CREDITS)

<table>
<thead>
<tr>
<th>Fall Semester (15 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INE307</td>
<td>Introduction to Deterministic OR Models</td>
</tr>
<tr>
<td>INE350</td>
<td>Simulation</td>
</tr>
<tr>
<td>INE351</td>
<td>Simulation Laboratory</td>
</tr>
<tr>
<td>MEE 212</td>
<td>Computer Applications in IME</td>
</tr>
<tr>
<td>MEE 321</td>
<td>Material Properties & Processes</td>
</tr>
<tr>
<td>——</td>
<td>Engineering Elective (1/3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester (16 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INE308</td>
<td>Introduction to Stochastic OR models</td>
</tr>
<tr>
<td>INE320</td>
<td>Engineering Economy I</td>
</tr>
<tr>
<td>INE346</td>
<td>Production Systems I</td>
</tr>
<tr>
<td>INE362</td>
<td>Manufacturing Processes</td>
</tr>
<tr>
<td>INE363</td>
<td>Manufacturing Lab</td>
</tr>
<tr>
<td>——</td>
<td>Engineering Elective (2/3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Module II (5 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG203</td>
<td>Fundamentals of Oral Communication</td>
</tr>
<tr>
<td>GNE301</td>
<td>Professional Communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Module II (4 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>——</td>
<td>LAC Elective</td>
</tr>
<tr>
<td>HLT201</td>
<td>Basic Health</td>
</tr>
</tbody>
</table>

YEAR III (38 CREDITS)

<table>
<thead>
<tr>
<th>Fall Semester (15 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE 305</td>
<td>Professional Ethics</td>
</tr>
<tr>
<td>INE416</td>
<td>Ergonomics</td>
</tr>
<tr>
<td>INE417</td>
<td>Ergonomics Lab</td>
</tr>
<tr>
<td>INE442</td>
<td>Quality Control</td>
</tr>
<tr>
<td>INE446</td>
<td>Production Systems II</td>
</tr>
</tbody>
</table>
Spring Semester (17 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE428</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>INE438</td>
<td>Facilities Planning and Logistics</td>
<td>3</td>
</tr>
<tr>
<td>MEE401</td>
<td>Energy Systems</td>
<td>2</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (1/10) [Area 1]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (2/10) [Area 2]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (3/10) [Area 3]</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE498</td>
<td>Professional Experience</td>
<td>6</td>
</tr>
</tbody>
</table>

YEAR IV (30 CREDITS)

Fall Semester (16 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE591</td>
<td>Project 1</td>
<td>3</td>
</tr>
<tr>
<td>INE593</td>
<td>Capstone Engineering Design</td>
<td>1</td>
</tr>
<tr>
<td>INE440</td>
<td>Advanced Statistics</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (4/10) [Area 4]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (5/10) [Free]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (6/10) [Free]</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (14 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE491</td>
<td>Seminar on Contemporary Issues</td>
<td>2</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (7/10) [Free]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (8/10) [Free]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (9/10) [Free]</td>
<td>3</td>
</tr>
<tr>
<td>INE—</td>
<td>Technical Elective (10/10) [Free]</td>
<td>3</td>
</tr>
</tbody>
</table>

ENGINEERING ELECTIVE COURSES

The following table clarifies the “INE General Elective” requirements:

- The first column lists the approved courses’ subjects
- The second column lists the excluded courses that DO NOT count as INE General Elective towards graduation.

<table>
<thead>
<tr>
<th>Category</th>
<th>Exclusions from category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses with MEE prefix</td>
<td>MEE498, MEE591, MEE592, MEE599 and all Lab courses (1-credit courses). Lab Courses are: MEE305, MEE312, MEE333, MEE406, MEE408, MEE433, MEE443, MEE404, MEE516.</td>
</tr>
<tr>
<td>Courses with COE prefix</td>
<td>COE201, COE211, COE498, COE591, COE592, COE599 and all Lab courses (1-credit courses). Lab Courses are: COE303, COE322, COE324, COE411, COE425, COE515, COE516.</td>
</tr>
<tr>
<td>Courses with ELE prefix</td>
<td>ELE201, ELE591, ELE498, ELE592, ELE599, and all lab courses (1 credit courses). Lab Courses are: ELE303, ELE402, ELE403, ELE416, ELE423, ELE443, ELE523, ELE540, ELE546.</td>
</tr>
<tr>
<td>Courses with CIE prefix</td>
<td>ELE201, ELE591, ELE498, ELE592, ELE599, and all lab courses (1 credit courses). Lab Courses are: ELE303, ELE402, ELE403, ELE416, ELE423, ELE443, ELE523, ELE540, ELE546.</td>
</tr>
<tr>
<td>Courses with ACC, FIN, ECO, MIS prefixes</td>
<td>CIE200, CIE360, CIE498, CIE580, CIE584, CIE583, CIE600, CIE601, CIE602, and all Lab and Soft Courses. Lab/Soft courses are: CIE303, CIE305, CIE307, CIE309, CIE321, CIE323, CIE425, CIE427, CIE445, CIE447, CIE461, CIE486, CIE581.</td>
</tr>
<tr>
<td>Courses with CSC, and MTH prefix</td>
<td>CSC201, CSC241, CSC242, CSC243, CSC398, CSC480, CSC490, CSC498, CSC599, MTH101, MTH102, MTH111, MTH200, MTH201, MTH206, MTH301, MTH304, MTH320 to MTH408, MTH497, MTH498, MTH499, MTH321, MTH401, MTH402, MTH406.</td>
</tr>
<tr>
<td>Courses with CHM prefix</td>
<td>CHM201</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

INE302 Linear Programming [3-o, 3 cr.]
This course covers the formulation of linear programming problems, simplex method, duality, and sensitivity analysis.
Prerequisites: GNE333 Engineering Analysis I.

INE307 Deterministic OR models [3-o, 3 cr.]
Introduction to deterministic OR modeling. Optimization modeling: decision variables, objective functions, and constraints. Models include linear programs, integer programs, transportation and assignment problems, simple network problems. Methods include simplex method, transportation simplex, shortest path, minimum cost flow, and maximum flow problems.
Pre-requisites: GNE333 Engineering Analysis I,COE212 Engineering Programming.

INE308 Stochastic OR models [3-o, 3 cr.]
Introduction to discrete Markov chains and continuous Markov Processes, including transient and limiting behavior. The Poisson/Exponential process. Conditional probabilities and conditional expectations. Applications to reliability, maintenance, inventory, production, simple queues and other engineering problems. Introduction to decision theory, risk, utility and decision trees.
Pre-requisites: GNE331 Probability and Statistics.

INE320 Engineering Economy I [3-o, 3 cr.]
This course covers equivalence and interest formulae, real-world transactions, present worth analysis, annual equivalent worth, rate of return analysis, depreciation, inflation, and cost/benefit ratio.
Prerequisites: Third year standing.

INE346 Production Systems I [3-o, 3 cr.]
An introduction to subjects that span the industrial engineering curriculum and that are covered in greater detail in more advanced courses. Subjects covered are forecasting, EOQ, safety stock, process design, aggregate planning, facilities planning and logistics, quality control, human factors, ergonomics and work design, principles of industrial management and project management.
Prerequisites: GNE331 Probability and Statistics, INE307 Deterministic OR models.

INE350 Simulation [3-o, 3 cr.]
This course covers random number generation, random variety generation, components of discrete event simulation, learning simulation software, and the simulation of simple systems: queuing, inventory, manufacturing, QC, transportation, layout.
Prerequisites: GNE331 Probability and Statistics, and COE211 Computer Programming.

INE351 Simulation Lab [0-2, 1 cr.]
Lab course complements the course INE350 simulation. This lab provides students with hands-on experience in the use of state of the art simulation tools and programs such as ARENA.
Co-requisites: INE350 Simulation.

INE362 Manufacturing Processes [3-o, 3 cr.]
This course offers a balanced quantitative and qualitative coverage of manufacturing processes: casting, material removal, deformation, welding and assembly. Course presents an overview of engineering materials, primary-manufacturing processes and includes projects tailored towards using manufacturing processes for obtaining functional products.
Prerequisites: MEE321 Material Properties and Processes.

INE363 Manufacturing Lab [0-3, 1 cr.]
Lab provides students with hands on experience in the use of traditional mechanical workshop equipment and software for manufacturing drawings generation. Students are also introduced to CNC Programming. Concurrent with INE362 Manufacturing Processes.

INE402 Optimization [3-o, 3 cr.]
This course covers queuing theory and models, linear programming, integer programming, transportation/allocation, assignment, inventory, annealing,
networks, dynamic programming, forecasting, and simulation techniques.
Prerequisites: GNE333 Engineering Analysis I.

INE407 Network Flow [3-0, 3 cr.]
This course covers networks, shortest/longest path, decision trees, and network flow.
Prerequisites: INE307 Deterministic OR models or Consent of instructor.

INE410 Work Design and Measurement [3-0, 3 cr.]
This course covers methods engineering, operation analysis, worker and machine relationships, productivity measures, time study, time standards, allowances, work sampling, predetermined time systems, learning curves, wage payment, safety and risk factor identification.
Pre-requisites: Fourth year standing

INE414 Human Factors in Engineering [3-0, 3 cr.]
This course covers information input and processing, auditory and visual and tactual displays, motor skills, human factors in systems design, physical work and MMH, hand tools and devices, work place design, illumination, and climate and noise considerations.
Prerequisites: Fourth-year standing.

INE415 Occupational Safety [2-0, 2 cr.]
This course covers eliminating and controlling hazards, system safety, expert systems, and accident reconstruction methodologies.
Pre-requisites: INE410 Motion and Time Study, and INE414 Human Factors in Engineering.

INE416 Ergonomics [4-0, 4 cr.]
This course covers the biomechanics of the musculoskeletal system; anthropometry; manual work design; lifting; motion study; workstation, tools, and tasks design; displays & controls design; machine user interfaces; environmental stress assessment (noise, heat, illumination); toxicology; cognitive work design; operations analysis; worker and machine relationships; productivity measures; time standards; allowances; work sampling; predetermined time systems; learning curves; wage payment; safety and risk factor identification; worker motivation; job evaluation; job compensation.
Prerequisites: Fourth year standing.

INE417 Ergonomics Lab [0 -3, 1 cr.]
This lab provides students with hands on experience in the use of the state of the art ergonomics equipment and software for virtual human modeling.
Concurrent with INE416 Ergonomics

INE428 Project Management [3-0, 3 cr.]
This course covers topics on organization structures, project manager-line manager interface, manager’s role as planning agent, skill requirements for project manager, management functions, team building as an ongoing process, concurrent engineering as a PM approach, TQM as a PM approach, effective team communication and communication traps, project communication, effective time management, managing conflicts and conflict resolution, ethics obligation matrix and ethics for project managers, project planning, project time management, activity planning, CPM scheduling, and resource allocation.
Course includes a team project to plan and schedule the implementation of a selected project.
Pre-requisites: GNE305 Professional Ethics.

INE436 Materials Handling [3-0, 3 cr.]
This course covers materials handling equipment, the selection and design of material handling systems, simulation, and interface with facilities layout.
Pre-requisites: INE446 Production Systems II or Consent of instructor.

INE438 Facilities Planning & Logistics [3-0, 3 cr.]
This course covers topics in flow measurements and analysis, flow planning, activity planning and relationships, layout planning, single facility location models minimax and minisum facility location, multiple facility location, process capacity analysis, materials handling capacity analysis, facilities planning in the context of supply chain design and supply chain excellence.
Prerequisites: INE446 Production Systems II.
INE440 Advanced Statistics [3-0, 3 cr.]
This course covers single factor experiments, randomized blocks, Latin squares, introduction to factorial designs, 2k factorial blocking and confounding, and forecasting.
Prerequisites: GNE331 Probability and Statistics.

INE442 Quality Control [3-0, 3 cr.]
This course covers the modeling process quality, inferences about process quality, statistical process control, types of control charts, acceptance sampling, and process capability analysis.
Prerequisites: INE346 Production Systems I.

INE443 Quality Control II [1-2, 2 cr.]
This course covers application of SPC tools to control process quality in a real manufacturing setting, and the introduction to TQM/ISO standards.
Prerequisites: INE440 Advanced Statistics and INE442 Quality Control I.

INE446 Production Systems II [3-0, 3 cr.]
This course covers topics on Inventory analysis, Forecasting, Machine Scheduling, sequencing, cycle time, material control, Manufacturing systems, e.g., cellular, group technology, flexible, lean, JIT, MRP, and ERP. Concurrent engineering and design for manufacturing.
Prerequisites: INE346 Production Systems I.

INE491 Seminar on Contemporary Issues in INE [2-0, 2 cr.]
This is a seminar course covering contemporary issues in Industrial Engineering. Students are asked to research contemporary subjects in the field and present findings to the class.
Prerequisites: Fourth year standing.

INE498 Professional Experience [0-6, 6 cr.]
This course covers professional experience, through training in the execution of real-life engineering projects.
Prerequisites: Fifth-year standing and the consent of the instructor.

INE501 Linear Programming [3-0, 3 cr.]
Formulation of linear programming problems; Simplex method; Duality and sensitivity analysis.
Prerequisites: GNE333 Engineering Analysis I and consent of instructor.

INE502 Integer Programming [3-0, 3 cr.]
This course covers integer programming and general search techniques.
Prerequisites: INE307 Deterministic OR models or Consent of instructor.

INE503 Nonlinear Optimization [3-0, 3 cr.]
This course covers nonlinear/continuous optimization methods.
Prerequisites: INE307 Deterministic OR models or Consent of instructor.

INE504 Stochastic Processes [3-0, 3 cr.]
Introduction to non-measure theoretic stochastic processes. Poisson processes, renewal processes, and discrete time Markov chains. Applications in queuing systems, reliability, stochastic scheduling, and inventory control.
Prerequisites: GNE331 Probability and Statistics and consent of instructor.

INE505 Dynamic Programming [3-0, 3 cr.]
This is a course on the theory and practice of dynamic programming. Topics covered in Deterministic DP: Shortest path algorithms including label setting and correcting, A* and solution horizon approaches, with applications in resource allocation, knapsack problem, capacity expansion, equipment replacement, and traffic routing; Infinite decision trees and dynamic programming networks with cycles. Topics covered in Stochastic DP are stochastic shortest path problem and Markov decision processes. Applications include asset divesture, capital budgeting, portfolio selection, inventory control, systems reliability, and maximization of expected utility with constant risk posture.
Prerequisites: INE307 Deterministic OR models, and consent of instructor.

INE506 Decision Analysis [3-0, 3 cr.]
This course covers decision analysis, game theory, Bayesian decision theory, and the utility theory.
Prerequisites: GNE331 Probability and Statistics, and consent of instructor.
INE507 Advanced Stochastic Processes [3-0, 3 cr.]
Prerequisites: INE504 Stochastic processes and consent of instructor.

INE521 Engineering Economy II [3-0, 3 cr.]
This course deals with the uncertainty, breakeven analysis, sensitivity analysis, probabilistic risk analysis, and accounting principles.
Prerequisites: INE320 Engineering Economy I.

INE522 Cost Engineering and Control [3-0, 3 cr.]
Prerequisites: consent of instructor.

INE523 Financial Engineering [3-0, 3 cr.]
Prerequisites: INE504 Stochastic Processes and consent of instructor.

INE524 Advanced Financial Engineering [3-0, 3 cr.]
Prerequisites: INE507 Advanced Stochastic Processes and INE523 Financial Engineering.

INE527 Project Scheduling [3-0, 3 cr.]
This course covers the basic critical path planning and scheduling, with arrow and precedence networks, introduction to resource leveling, and least cost scheduling, including time-cost trade-off analysis, and schedule control.
Prerequisites: consent of instructor or Fourth-year standing.

INE529 Project Contracting [3-0, 3 cr.]
This course covers construction contracting for contractors, owners, and engineers. (1) Industry structure, (2) Types of contracts and delivery systems of construction, (3) Planning, estimating, quantity takeoff and pricing, labor and equipment estimate, (4) Proposal preparation, and students use of contract documents to prepare detailed estimates.
Prerequisites: consent of instructor or Fourth-year standing.

INE541 Quality Management Systems [3-0, 3 cr.]
This course covers Total Quality Management theories and application, Design for Six Sigma (DFSS) and six sigma approaches, DMAIC, Auditing, ISO standards and ISO certification.
Prerequisites: Consent of instructor and fourth year standing.

INE542 Supply Chain Management [3-0, 3 cr.]
Special topics of current interest; Treatment of new developments in various areas of industrial engineering as warranted; Network Design in a Supply Chain; Demand Forecasting and Aggregate Planning; Transportation Networks; Sourcing.
Prerequisites: Consent of instructor and Fourth year standing.
INE544 Inventory Analysis [3-o, 3 cr.]
This course covers continuous/periodic/deterministic/stochastic inventory models, materials requirements planning (MRP), just-in-time production systems, assembly systems, and flexible manufacturing distribution systems.
Prerequisites: INE446 Production Systems II or Consent of instructor.

INE548 Machine Scheduling [3-o, 3 cr.]
This course covers basic single machine problem (BSMP), flow shop scheduling with setup cost (TSP), and vehicle routing.
Prerequisites: INE446 Production Systems II or Consent of instructor.

INE551 Advanced Simulation [3-o, 3 cr.]
This course covers the analysis of simulation data, input and output, validation and verification of system design, comparing alternative system configuration, simulation of complex systems, and case studies.
Prerequisites: INE350 Simulation, INE446 Production Systems I, Fourth-year standing.

INE563 CAD/CAM [3-o, 3 cr.]
This course introduces students to the use of product lifecycle management (PLM) software packages for sketching, drafting, modeling, assembly and prototyping. Course includes projects tailored towards using software to the design and manufacturing of a physical product.
Prerequisites: INE362 Manufacturing Processes

INE567 Time Series Control & Process Adjustment [3-o, 3 cr.]
Statistical analysis and design of process adjustment methods for quality improvement purposes. Topics include ARIMA time series models, autocorrelation and SPC, integration of SPC schemes and feedback control, identification and estimation of transfer function models, design and analysis of optimal stochastic controllers, PID and EWMA controllers, self-tuning and multivariate control.

INE591 Project I [3-o, 3 cr.]
This course covers selected engineering project, using acquired technical knowledge, formal report, and presentation.
Prerequisites: Fifth-year standing and INE362 Manufacturing Processes, INE350 Simulation, INE446 Production Systems II, INE438 Facilities Planning and Layout, INE428 Project Management, GNE305 Professional Ethics.

INE592 Project II [3-o, 3 cr.]
This course covers advanced engineering project, using acquired technical knowledge, formal report, and presentation.
Prerequisites: instructor’s consent and fifth-year standing.

INE593 Capstone Engineering Design [1-o, 1 cr.]
The course will reinforce and integrates topics covered in other courses in the curriculum and used in engineering design. Topics covered include need identification and problem definition, managing the design process, team behavior and group dynamics, design research and information gathering, concept generation and evaluation, risk, reliability, and safety, legal and ethical issues in design, communicating the design.
Prerequisites: course to be taken concurrently with INE591 Project I.

INE599 Topics in Industrial Engineering [1-3, 3 cr.]
This course covers the treatment of new development, in various areas of industrial engineering.
Prerequisites: instructor’s consent and fourth-year standing.
The Bachelor of Engineering degree program in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET (www.abet.org).

The Mechanical Engineering program offers a broad base for preparing students for a variety of careers in the design and construction of mechanical systems. The production, transformation, transmission and control of thermal and mechanical energy constitute one of the main tracks, which rely on thermodynamics, fluid mechanics and heat transfer. This track leads to applications in internal combustion engines, steam and gas power plants, and HVAC. Solid mechanics, kinematics, and dynamics of machinery lead to applications in vibrations control and machine design. The general area of manufacturing, which is closely linked to industrial engineering, is also covered in the course of study. The program emphasizes the broad spectrum of applications of mechanical engineering, as well as the interaction with other engineering disciplines. Laboratory experimentation and computer simulation are used to train students on the understanding, design and testing of thermal and mechanical systems. Six credits of professional experience are also included in the summer of the third year, to give students an opportunity to integrate classroom instruction with practical work experience, as a part of their academic program.

The Mechanical Engineering program requires the completion of 150 semester hours. While the program is credit-based, a typical schedule over a four-year period, including summer modules, is listed below. Students may select to take these courses over a longer period of time.

MISSION

The Mechanical Engineering program strives to support the mission of the school by providing students with a solid and contemporary mechanical engineering curriculum and a broad education that prepares them for successful careers as mechanical engineers in a globalized and diverse world as well as graduate studies.

GOALS OF CURRICULUM:

Program Educational Objectives

Within a few years of graduation, the graduates of the Mechanical Engineering program will:

1. Establish themselves as practicing mechanical engineers or be engaged in advanced studies in the areas of thermal/fluid systems, mechanical systems and design or materials and manufacturing;
2. Demonstrate leadership and function effectively as responsible members of professional teams;
3. Demonstrate ability to undertake engineering projects that address environment, society and economy requirements.

Student Outcomes

The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:

1. An ability to apply knowledge of mathematics, science and engineering;
2. An ability to design and conduct experiments, as well as to analyze and interpret data;
3. An ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;
4. An ability to function on multidisciplinary teams;
5. An ability to identify, formulate and solve engineering problems;
6. An understanding of professional and ethical responsibility;
7. An ability to communicate effectively;
8. A broad education necessary to understand the impact of engineering
solutions in a global, economic, environmental and societal context;
9. Recognition of the need and the ability to engage in lifelong learning;
10. Knowledge of contemporary issues;
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

CURRICULUM

YEAR I (42 CREDITS)

Fall Semester (16 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE212</td>
<td>Engineering Programming</td>
<td>3</td>
</tr>
<tr>
<td>ENG202</td>
<td>Sophomore Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>CIE200</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MEE 211</td>
<td>Engineering Graphics</td>
<td>1</td>
</tr>
<tr>
<td>MTH201</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>****</td>
<td>Liberal Arts Curriculum Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (16 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELE305</td>
<td>Introduction to Electrical Eng.</td>
<td>3</td>
</tr>
<tr>
<td>ETH 201</td>
<td>Moral Reasoning</td>
<td>1</td>
</tr>
<tr>
<td>ARA20</td>
<td>Appreciation of Arabic Literature</td>
<td>3</td>
</tr>
<tr>
<td>MTH304</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MTH206</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>MEE241</td>
<td>Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module I (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE333</td>
<td>Engineering Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE331</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PED2—</td>
<td>Physical Education</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR II (41 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE311</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEE312</td>
<td>Fluid Mechanics Lab</td>
<td>1</td>
</tr>
<tr>
<td>MEE301</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MEE351</td>
<td>Computer Aided Design</td>
<td>3</td>
</tr>
<tr>
<td>MEE321</td>
<td>Material Properties and Processes</td>
<td>3</td>
</tr>
<tr>
<td>MEE212</td>
<td>Computer Applications in IME</td>
<td>2</td>
</tr>
</tbody>
</table>

Spring Semester (17 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE403</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MEE404</td>
<td>Heat Transfer - Lab</td>
<td>1</td>
</tr>
<tr>
<td>MEE391</td>
<td>Instrumentation and Measurements</td>
<td>3</td>
</tr>
<tr>
<td>MEE320</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MEE341</td>
<td>Kinematics and Dynamics of Linkages</td>
<td>3</td>
</tr>
<tr>
<td>MEE332</td>
<td>Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td>MEE333</td>
<td>Manufacturing Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer Module II (5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG203</td>
<td>Fundamentals of Oral Communication</td>
<td>3</td>
</tr>
<tr>
<td>GNE301</td>
<td>Professional Communication</td>
<td>2</td>
</tr>
</tbody>
</table>

Summer Module II (4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>****</td>
<td>Liberal Arts Curriculum Elective</td>
<td>3</td>
</tr>
<tr>
<td>HLT201</td>
<td>Basic Health</td>
<td>1</td>
</tr>
</tbody>
</table>

YEAR III (38 CREDITS)

Fall Semester (15 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE305</td>
<td>Professional Ethics</td>
<td>1</td>
</tr>
<tr>
<td>****</td>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>MEE442</td>
<td>Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>MEE443</td>
<td>Mechanical Vibrations Lab</td>
<td>1</td>
</tr>
<tr>
<td>MEE445</td>
<td>Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>MEE446</td>
<td>Control Systems Lab</td>
<td>1</td>
</tr>
<tr>
<td>MEE444</td>
<td>Thermal Systems Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (17 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE428</td>
<td>Project Management</td>
<td>3</td>
</tr>
<tr>
<td>INE491</td>
<td>Seminar on Contemporary Issues</td>
<td>2</td>
</tr>
<tr>
<td>MEE302</td>
<td>Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>MEE422</td>
<td>Mechanical Engineering Design</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Elective (1/6)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective (2/6)</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Module II (6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE498</td>
<td>Professional Experience</td>
<td>6</td>
</tr>
</tbody>
</table>

YEAR IV (29 CREDITS)

Fall Semester (14 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE593</td>
<td>Capstone Engineering Design</td>
<td>1</td>
</tr>
<tr>
<td>MEE591</td>
<td>Project I</td>
<td>3</td>
</tr>
<tr>
<td>INE402</td>
<td>Optimization</td>
<td>3</td>
</tr>
<tr>
<td>MEE515</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
</tr>
<tr>
<td>MEE516</td>
<td>Refrigeration and Air Conditioning Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Elective (3/6)</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (15 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Elective (4/6)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective (5/6)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective (6/6)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Elective Course</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNE334</td>
<td>Engineering Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>INE527/INE529</td>
<td>Project Scheduling/Contracting</td>
<td>3</td>
</tr>
<tr>
<td>MEE407</td>
<td>Internal Combustion Engines</td>
<td>3</td>
</tr>
<tr>
<td>MEE421</td>
<td>Finite Element Methods</td>
<td>3</td>
</tr>
<tr>
<td>MEE503</td>
<td>Power Plant Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MEE505</td>
<td>Solar Systems</td>
<td>3</td>
</tr>
<tr>
<td>MEE513</td>
<td>Gas Turbines</td>
<td>3</td>
</tr>
<tr>
<td>MEE515</td>
<td>Refrigeration and Air-Conditioning</td>
<td>3</td>
</tr>
<tr>
<td>MEE533</td>
<td>Advanced CAD/CAM</td>
<td>3</td>
</tr>
<tr>
<td>MEE543</td>
<td>Acoustics and Vibration Control</td>
<td>3</td>
</tr>
<tr>
<td>MEE550</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>MEE559</td>
<td>Energy Audit</td>
<td>3</td>
</tr>
<tr>
<td>MEE592</td>
<td>Project II</td>
<td>3</td>
</tr>
<tr>
<td>MEE599</td>
<td>Topics in Mechanical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

SCIENCE ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO200</td>
<td>Basic Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHM200</td>
<td>Essentials of Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHM201</td>
<td>Chemical Principles</td>
<td>3</td>
</tr>
<tr>
<td>BIO201</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>PHY201</td>
<td>Electricity and Magnetism</td>
<td>4</td>
</tr>
</tbody>
</table>

Or any other approved technical elective course by the department.
COURSE DESCRIPTIONS

MEE211 Engineering Graphics [0-2, 1 cr.]
An introduction in the basics of 2D drafting, sketching and pictorial views, orthographic multiviews, auxiliary and section views, dimensions, drawing layout, and presentations. Basic use of a computer aided drafting software (such as AutoCAD).

MEE212 Computer Applications in IME [1-2, 2 cr.]
This course is designed to introduce students to powerful computational software such as MATLAB and MATHEMATICA and to database systems. Students will learn how to write MATLAB and MATHEMATICA programs for Industrial and Mechanical engineering applications. Array definitions and manipulations, user-defined functions, solution of differential equations, plotting, and several built in functions will be covered.
Prerequisites: COE212 Engineering Programming and GNE333 Engineering Analysis

MEE220 Engineering Graphics [2-4, 4 cr.]
This course covers basic engineering drawing, CAD proficiency, sketching, and schematics.

MEE241 Dynamics [3-0, 3 cr.]
This course covers kinematics, and kinetics of particles, systems of particles, and kinetics of rigid bodies.
Prerequisites: MTH201 Calculus III and CIE200 Statics.

MEE301 Thermodynamics [3-0, 3 cr.]
This course covers the basic concepts of work and heat, systems and control volumes, pure substances, equation of state, first law for systems, steady flow energy equation, second law for systems and control volume, and entropy.
Prerequisites: Sophomore standing.

MEE302 Energy Conversion [3-0, 3 cr.]
This course covers the performance and design considerations of energy conversion systems, the design and performance problems involving steam, gas turbine, and combined cycle power plants, and the reciprocating and rotary engines.
Prerequisites: MEE301 Thermodynamics.

MEE311 Fluid Mechanics [3-0, 3 cr.]
This course covers fluid statics, analysis of fluid motion using the continuity, momentum, and energy, relationship, and the introduction to viscous flow.
Prerequisites: MEE241 Dynamics.

MEE312 Fluid Mechanics Lab [0-3, 1 cr.]
This course entails laboratory experiments in fluid mechanics. Concurrent with MEE311 Fluid Mechanics.

MEE320 Strength of Materials [3-0, 3 cr.]
This course covers mechanical properties and behavior of stressed materials, stress analysis of beams, columns and shafts, statically indeterminate structures, plane stress and strain, and principal stresses.
Prerequisites: CIE200 Statics.

MEE321 Material Properties and Processes [3-0, 3 cr.]
This course covers the mechanical and physical properties of engineering materials (metals, ceramics and polymers), which are explained through their structures. Topics include strength and ductility, crystal structures and defects, phases, heat treatment. The course includes a revision of theories and principles of atomic structure and chemical bonding.
Prerequisites: sophomore standing.

MEE332 Manufacturing Processes [3-0, 3 cr.]
This course offers a balanced quantitative and qualitative coverage of manufacturing processes: casting, material removal, deformation, welding and assembly. Course presents an overview of engineering materials, primary-manufacturing processes and includes projects tailored towards using manufacturing processes for obtaining functional products.
Prerequisites: MEE321 Material Properties and Processes.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEE333</td>
<td>Manufacturing Lab [0-3, 1 cr.]</td>
<td></td>
<td></td>
<td>Lab provides students with hands-on experience in the use of traditional mechanical workshop equipment and software for manufacturing drawings generation. Students are also introduced to CNC Programming. Concurrent with MEE332 Manufacturing Processes.</td>
</tr>
<tr>
<td>MEE341</td>
<td>Kinematics and Dynamics of Linkages [3-0, 3 cr.]</td>
<td></td>
<td></td>
<td>This course covers kinematics of mechanical devices, displacement, velocity and acceleration of linkages, cams and gear trains, and an introduction to synthesis, design, and computer problems. Prerequisites: MEE 241 Dynamics, MEE351 Computer Aided Design</td>
</tr>
<tr>
<td>MEE351</td>
<td>Computer Aided Design [2-2, 3 cr.]</td>
<td></td>
<td></td>
<td>This course covers the numerical design chain encompassing conceptual design techniques & methodologies, sketching, geometrical modeling, design specifications and product assembly. Course includes projects tailored towards using CAD software for designing mechanical engineering products. Prerequisites: MEE211 Engineering Graphics</td>
</tr>
<tr>
<td>MEE390</td>
<td>Instrumentation and Measurements [1-3, 2 cr.]</td>
<td></td>
<td></td>
<td>This course covers data acquisition, design of experiments, and laboratory safety, selection of instruments for experiments, informal and formal report writing, statistics of large samples applied to fixed and dynamic response of instruments, and the use of instrumentation software. Prerequisites: ELE305 Introduction to Electrical Engineering, GNE331 Probability and Statistics</td>
</tr>
<tr>
<td>MEE391</td>
<td>Instrumentation and Measurements [2-3, 3 cr.]</td>
<td></td>
<td></td>
<td>Data acquisition; design of experiments and laboratory safety; selection of instruments for experiments; informal and formal report writing; statistics of large samples applied to fixed and dynamic response of instruments; use of instrumentation software. Prerequisites: ELE305 Introduction to Electrical Engineering; GNE 331 Probability and Statistics</td>
</tr>
<tr>
<td>MEE401</td>
<td>Energy Systems [2-0, 2 cr.]</td>
<td></td>
<td></td>
<td>This course covers the energy and its transformation, balance, and open/closed systems.</td>
</tr>
<tr>
<td>MEE403</td>
<td>Heat Transfer [3-0, 3 cr.]</td>
<td></td>
<td></td>
<td>This course covers the transfer of heat by conduction, radiation and convection, and the analysis of steady state, and simple transient heat processes, and the evaporation, boiling, and condensing, heat transfer. Prerequisites: MTH304 Differential Equations, MEE311 Fluid Mechanics</td>
</tr>
<tr>
<td>MEE404</td>
<td>Heat Transfer Lab [0-3, 1 cr.]</td>
<td></td>
<td></td>
<td>This course entails laboratory experiments in heat transfer. Prerequisites: GNE 331 Probability and Statistics; Concurrent with MEE403 Heat Transfer.</td>
</tr>
<tr>
<td>MEE407</td>
<td>Internal Combustion Engines [3-0, 3 cr.]</td>
<td></td>
<td></td>
<td>This course covers the principles, practice, and characteristics, of internal combustion engines, with laboratory demonstrations in engine testing and performance. The laboratory entails experiments in internal combustion engines. Prerequisites: MEE302 Energy Conversion</td>
</tr>
<tr>
<td>MEE414</td>
<td>Thermal Systems Design [3-0, 3 cr.]</td>
<td></td>
<td></td>
<td>This course covers the analysis and design of thermal systems using the principles developed in thermodynamics, fluid mechanics, and heat transfer. Students develop computer programs to solve open-ended thermal design problem. Prerequisites: MEE403 Heat Transfer</td>
</tr>
<tr>
<td>MEE421</td>
<td>Finite Element Methods [3-0, 3 cr.]</td>
<td></td>
<td></td>
<td>This course introduces a numerical technique used in the solution of PDE governed problems. Applications cover solid mechanics, fluid dynamics and heat transfer problems in 1D. The course provides an insight on the extension to 2D and 3D problems. Bar, truss, beam and frame elements are covered in solid mechanics applications. Computer program development for the solution of 1D problems. Use of state of the art commercial finite element software (COMSOL Multiphysics). Prerequisites: GNE333 Engineering Analysis I, and MEE320 Strength of Materials</td>
</tr>
</tbody>
</table>
MEE422 Mechanical Engineering Design [3-0, 3 cr.]
This course covers application of engineering design process to the design of mechanical components, subsystems and machines, problem-solving techniques, ethics, and patents.
Prerequisite: MEE320 Strength of Materials.

MEE442 Mechanical Vibrations [3-0, 3 cr.]
This course covers kinematics and force analysis of machine and machine elements, balancing, critical speed, flywheel design and dynamic measurement, and design and computer problems.
Prerequisites: MEE341 Kinematics and Dynamics of Linkages, and MTH304 Differential Equations

MEE443 Mechanical Vibrations Lab [0-3, 1 cr.]
This course entails laboratory experiments in machine dynamics.
Prerequisites: GNE 331 Probability and Statistics; Concurrent with MEE442 Mechanical Vibrations.

MEE445 Control Systems [3-0, 3 cr.]
This course covers control system design of mechanical systems, emphasis on thermal, fluid, and motion, systems under feedback control, and classical control topics, including laplace transforms, system modeling, stability theory, and practical applications to professional practice.
Prerequisites: GNE333 Engineering Analysis I; Concurrent with MEE442 Mechanical Vibrations.

MEE446 Control Systems Lab [0-3, 1cr]
The Control Systems lab provides experiential training of the methods used in modeling, analysis, simulation, and control of engineering systems. Students will design and implement controllers using modern Instruments and software.
Prerequisites: MEE391 Instrumentations and Measurements Concurrent with MEE445 Control Systems.

MEE 491 Seminar on Contemporary issues in MEE [2-0, 2 cr.]
This is a seminar course covering contemporary issues in Mechanical Engineering. Students are asked to research contemporary subjects in the field and present findings to the class.
Prerequisites: Third year standing.

MEE498 Professional Experience [0-6, 6 cr.]
This course covers professional experience through training in the execution of real-life engineering projects.
Prerequisites: Fifth-year standing and the consent of the instructor.

MEE503 Power Plant Engineering [3-0, 3 cr.]
This course covers steam and gas turbine power cycles, modern power plants, combined power plants, energy and availability analysis, economics of power generation, and design problems and field trips.
Prerequisites: MEE442 Mechanical Vibrations, MEE302 Energy Conversion and MEE 414 Thermal Systems Design.

MEE505 Solar Systems [3-0, 3 cr.]
This course covers the solar energy resources, collector models, active DHW, and space heating systems, passive heating, utilizability, and design-chart method, and photovoltaic and wind systems.
Prerequisites: MEE403 Heat Transfer.

MEE513 Gas Turbines [3-0, 3 cr.]
This course covers the design and performance of stationary and propulsion gas turbines.
Prerequisites: MEE302 Energy Conversion.

MEE515 Refrigeration and Air-Conditioning [3-0, 3 cr.]
This course covers principles of vapor compression and absorption refrigeration, heat pumps, psychometrics, principles of thermal comfort, and environmental aspects, determination of heating and cooling loads, and air conditioning system design and analysis.
Prerequisites: MEE403 Heat Transfer.
MEE516 Refrigeration and Air-Conditioning Lab [0-3, 1 cr.]
This course entails laboratory experiments in refrigeration and air-conditioning. Concurrent with MEE515 Refrigeration and Air-Conditioning.

MEE533 Advanced CAD/CAM [3-0, 3 cr.]
This course covers the application of the design process to design and manufacture engineering products throughout the different steps of specification, behavioral modeling, design analysis, material selection, prototyping, manufacturing and testing. The course requires extensive usage of PLM software packages to the design and manufacturing of a mechanical design problem.
Prerequisites: MEE332 Manufacturing Processes, MEE351 Computer Aided Design; 5th year standing

MEE543 Acoustics and Vibration Control [3-0, 3 cr.]
This course covers the acoustic momentum, energy and intensity, propagation, reflection and absorption, effects of the physical properties, transmission of sound in real media, forced and free vibration systems, with one or more degrees of freedom, vibration isolation, and transmission applied to problems of rotating, and reciprocating, machinery, and design problems on vibration isolation systems, and absorbers.
Prerequisites: MEE442 Mechanical Vibrations.

MEE550 Mechatronics [3-0, 3 cr.]
Mechatronics is an interdisciplinary engineering area that comprises the integration of mechanical engineering, electronics, control systems, and computer science, which together contribute to design smart products and processes. This course will cover principles and interfacing techniques of several sensors and actuators; rapid prototyping of closed-loop computer controlled electromechanical systems; analysis, design, and implementation of Mechatronic systems. Basic electronics, DC motors, stepper motors, H-bridges, various sensors, signal conditioning, PIC microcontrollers, PLCs, and others topics will be covered in class lectures and lab assignments.
Prerequisites: MEE391 Instrumentation and Measurements.

MEE590 Energy Audit [3-0, 3 cr.]
This course covers the survey of energy sources, cost analysis, alternatives, environmental issue, audit techniques, and technical reporting.
Prerequisites: MEE403 Heat Transfer.

MEE591 Project I [3-0, 3 cr.]
This course covers selected engineering project using acquired technical knowledge, formal report, and presentation.
Pre-requisites: Fifth year standing and MEE332 Manufacturing Processes, MEE414 Thermal Design Systems, MEE422 Mechanical Engineering Design, GNE305 Professional Ethics, INE428 Project Management

MEE592 Project II [3-0, 3 cr.]
This course covers advanced engineering project, using acquired technical knowledge, formal report, and presentation.
Pre-requisites: Final-year standing and the consent of the instructor.

MEE593 Capstone Engineering Design [1-0, 1 cr.]
This course reinforces and integrates topics covered in other courses in the curriculum and used in engineering design. Topics covered include need identification and problem definition, managing the design process, team behavior and group dynamics, design research and information gathering, concept generation and evaluation, risk, reliability, and safety, legal and ethical issues in design, communicating the design.
Co-requisites: Project I

MEE599 Topics in Mechanical Engineering [1-3, 3 cr.]
This course covers the treatment of new development in various areas of mechanical engineering.
Prerequisites: Fifth-year standing and the consent of the instructor.
The packaging minor at LAU is an interdisciplinary field in which scientific and design principles are applied to analyze, develop and produce packages that inform, communicate, advertise, contain, protect, preserve and transport a product. The packaging minor includes the study of products, package materials, materials behavior, structures, methods, machinery and most common types of processes used for package design, production, and transportation. The program is designed to capitalize on the theories and skills learned in other disciplines, thereby uniquely preparing students for success as packaging professionals, in positions ranging from technical research and development to design, production and sales. In order to maximize the comprehension of this study field by the student, the minor includes laboratory and studio courses to provide the student with hands-on experience.

GOALS OF CURRICULUM

Educational Objectives
The objective of the Packaging Minor is to capitalize on theories and skills learned in other disciplines, to prepare students for success as packaging professionals in positions ranging from technical research and development to design, production and sales.

Student Outcomes
1. The ability to apply scientific and design principles to analyze, develop and produce packages that protect, preserve and transport a product;
2. The ability to apply design principles to inform, to communicate, and to advertise a product;
3. Knowledge of materials, and materials’ behavior, structures, methods, machinery, and the most common types of processes used for package design, production, and transportation;
4. Hands-on experience in testing, analyzing and designing packages.

REQUIREMENTS
The Packaging Minor requires the completion of 18 credits of packaging courses, consisting of 12 required core credits, and six elective credits.

Required Core Courses (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKG/INE570</td>
<td>Introduction to Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE572</td>
<td>Packaging Dynamics and Permeation</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE573</td>
<td>Packaging Types and Processes</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE580</td>
<td>Packaging Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses (6 credits)

Design Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKG/INE582</td>
<td>Structural Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE584</td>
<td>Package Branding</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE586</td>
<td>Computer Graphics for Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE588</td>
<td>Packaging Applications</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE589</td>
<td>Special Topic Course in Packaging</td>
<td>3</td>
</tr>
</tbody>
</table>

Engineering Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKG/INE574</td>
<td>Paper and Paperboard Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE575</td>
<td>Corrugated Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE576</td>
<td>Rigid Plastic Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE577</td>
<td>Packaging for Food, Drug and Cosmetics</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE578</td>
<td>Food Preservation Packaging</td>
<td>3</td>
</tr>
<tr>
<td>PKG/INE579</td>
<td>Special Topic Course in Packaging</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Students with Engineering or Design emphasis are advised to take the two electives in the respective area of emphasis.
COURSE DESCRIPTIONS

PKG/INE570 Introduction to Packaging [3-o, 3 cr.]
This course will present an overview of the history of packaging, its functions, materials, and development, and an overview of packaging design, processing systems, and testing. The historical, social, technological, and environmental impact, as well as the legal aspects of packaging will also be discussed. Examples will include product/package combinations, and the impact these choices make on the market success of a product, and the important role of proper packaging design in the reduction of solid waste, and sustainable development.
Prerequisites: Second-year standing.

PKG/INE572 Packaging Dynamics and Permeation [2-3, 3 cr.]
This course is an introduction to the mechanics, stresses and strains, shock, vibration, compression, temperature, humidity, friction and pressure, as factors affecting the design of packaging, including the design of packages to protect against these hazards. Damage boundary, product fragility, barrier properties against permeation will be explored from the point of view of the packaging industry.
Prerequisites: PHY211 Statics or ARC311 Building Systems.

PKG/INE573 Packaging Types and Processes [3-o, 3 cr.]
This course is a study of the operation and performance of modern packaging systems (e.g. die cutting, blister packaging, blow molding, injection molding, etc.). Topics include equipment selection and specification, design and implementation of packaging lines in production, assessing and improving operating performance, process control and instrumentation, as well as overall environmental friendliness of the process, its sustainability and amenability to reuse, recycling, and total waste reduction.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE574 Paper & Paperboard Packaging [3-o, 3 cr.]
This course is a study of the sources of cellulose fiber, methods of extraction, the effect of different fibers on the finished product, additives, conversion to paper and paperboard, identify paper types, surface finishes, and the design features and performance of basic paper characterization tests.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE575 Corrugated Packaging [3-o, 3 cr.]
This course is a study of distribution packaging which includes: product design factors affecting transportation, transportation hazards, protective package design, modern computer aids to shipping package design, regulations, and the methods and significance of various pre-shipment test procedures.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE576 Rigid Plastic Packaging [3-o, 3 cr.]
This course is a study of the different methods of forming polymers into usable shapes, and the advantages and limitations of each, with case studies of plastic bottle designs, thermoform design practice, with performance of standard container tests and evaluations.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE577 Packaging for Food, Drug, and Cosmetics [3-o, 3 cr.]
This course covers the physical and chemical properties of packaging materials including metals, glass, paper and polymers, in relation to their use in food, drugs, and cosmetics packaging applications. The major technical, safety, and legislative, areas critical to the successful application of packaging technologies will be reviewed, including a brief exploration of the historical aspects of food, drug, and cosmetics packaging in order to provide a perspective on modern packaging industries and their associated regulatory measures.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE578 Food Preservation Packaging [3-o, 3 cr.]
This course covers the study of the process of food deterioration, and the packaging methods that are used to control these processes, in order to extend useful shelf life of certain products.
Prerequisites: PKG/INE570 Introduction to Packaging.
PKG/INE579 Special Topic Course in Packaging Engineering [3-0, 3 cr.]
This course will address the current issues in packaging engineering, and the trends in the market, with lectures by invited guests from the field.
Prerequisites: The consent of the instructor.

PKG/INE580 Packaging Design [1-4, 3 cr.]
This course covers the application of graphic skills on 3-D representations, and investigation of new materials and methods in designing product containers. Projects include designing a line of products under the same brand name, constructing die cut boxes, labels, and creating experimental packages.
Prerequisites: Second-year standing.

PKG/INE582 Structural Packaging [1-4, 3 cr.]
This course will revolve around the creation and manipulation of basic shapes, in order to generate new structures for package designs. Issues of structures’ functional relevance and appropriateness will be investigated, in addition to the emphasis on the notion of the package as a work of art.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE584 Package Branding [1-4, 3 cr.]
This course will examine packaging in relation to the brand identity of a product. Students will be encouraged to explore new methods, and to bring fresh ideas to the concept of surface treatment and structure in the elaboration of the visual identity of a product.
Prerequisites: PKG/INE570 Introduction to Packaging.

PKG/INE586 Computer Graphics for Packaging [2-2, 3 cr.]
This course covers the major software tools used by professionals in the packaging industry. Students will design and develop a relational database. Commercial label design software will be used to create product labels, including bar codes. Spreadsheets and programming environment will be used to solve packaging/business related problems. 2D/3D design software will be used to develop packaging concepts, and generate working drawings.
Prerequisites: MEE220 Engineering Graphics or ARC251 Introduction to Computer Graphics or DES251 Introduction to Computer Graphics, or GRA251 Introduction to Computer Graphics.

PKG/INE588 Packaging Applications [1-4, 3 cr.]
This course provides the students the opportunity to apply the knowledge gained through actual projects, with a follow up on the production of packages in the factory. Assignments will address the functionality of packaging from product identification to its entire appeal, stacking, display and protection. Pre-requisites: PKG/INE573 Packaging Types and Processes, and PKG/INE572 Packaging Dynamics and Permeation, or PKG/INE580 Packaging Design.

PKG/INE589 Special Topic Course in Packaging Design [3-0, 3 cr.]
This course will address the current issues in packaging design, and the trends in the market, with lectures by invited guests from the field.
Prerequisites: Consent of the instructor.
The Master of Science in Engineering in Industrial Engineering and Engineering Management program responds to a need, at the country level, for engineers that can manage and improve integrated systems of people, materials, information, facilities, and technology. The graduate program in Industrial Engineering and Engineering Management, with emphasis in Engineering Management, draws on LAU’s substantial, and growing, experience in undergraduate Industrial Engineering education, to provide engineers, coming from other engineering disciplines, with a significant opportunity to specialize in the management, and the optimization, of engineering systems.

The graduate program in Industrial Engineering and Engineering Management is essentially a hybrid program that is built by combining specialized knowledge bases, leading to a non-traditional interdisciplinary education. The knowledge bases, referred to hereunder as concentrations areas, consist in part of elective Graduate-level courses from Industrial, Mechanical, and Civil Engineering programs, and Graduate courses from Computer Science, Economics, Business, and International Affairs graduate programs.

MISSION

The mission of the graduate program in Industrial Engineering and Engineering Management is to capitalize on the skills and theories learned in disciplines other than industrial engineering, to uniquely prepare students for successful engineering management careers.

GOALS OF CURRICULUM

Educational Objectives

The objectives of the graduate program in Industrial Engineering and Engineering Management are to:

1. Provide engineers, coming from other engineering disciplines, with a significant opportunity to specialize in the management and optimization, of engineering systems;
2. Introduce engineers to the state of the art tools and methods used in the design, management, or improvement, of integrated systems of people, materials, facilities, information, and technology;
3. Provide students with a unique, nontraditional, interdisciplinary education that is tailored to the student’s professional needs and interests.

Student Outcomes

The students will acquire in their matriculation through the program, the following skills, knowledge, and behaviors:

1. The ability to use the knowledge of math and science to model, and to improve, complex integrated systems of people, materials, facilities or technology;
2. The broad knowledge that encompasses the fields of production systems and manufacturing, construction engineering and management, and finance and economics;
3. The ability to use data analysis, and optimization, for decision making;
4. The ability to provide support for systems engineering and project management.
5. The ability to function as a professional in the discipline;
6. The ability to grow through a lifelong acquisition of knowledge;
7. Advanced proficiency in the student-selected topics in optimization, production systems and manufacturing, infrastructure and construction, and management, or finance and economics.

ADMISSIONS REQUIREMENTS

The program is open to applicants with B.E. or B.S. degrees in the Engineering disciplines, other than in Industrial Engineering. Admission is granted on a selective basis to students meeting the following minimum requirements. Applicants must have a Bachelor of Science in Engineering, or a Bachelor of Engineering, Degree from an accredited college or university, with a minimum general Grade Point Average (GPA) equivalent to 2.75, on a 4-point scale, or 2.75 in the Major.

The GRE general exam is required of all applicants (GRE subject exams are not required). All applicants must submit scores for the GRE general exam (includes verbal reasoning, quantitative reasoning, and analytical writing scores). Your GRE test scores are an important part of your application. GRE test scores that are more than 5 years old will not be accepted.

The admissions committee considers several factors when making admission decisions: your academic performance at prior institutions (grades, rankings, and GPAs) and your GRE test score. The rate of graduate assistantship (GA), when requested, is directly related to your GPA and GRE scores. Letters of recommendation are optional; however, three letters are recommended, two of which to be completed by faculty who are familiar with your academic performance.

If the GPA is less than 2.75, the applicant may be admitted as “special,” as described in the Academic Rules and Regulations for graduate programs.

DEGREE REQUIREMENTS

The graduate program in Industrial Engineering and Engineering Management, with Emphasis in Engineering Management, consists of 30 credit hours and leads to a Master of Science in Industrial Engineering and Engineering Management (Emphasis in Engineering Management).

In particular the degree requirements are:
8. 30 hours of graduate level courses;
9. At least 18 hours in engineering courses;
10. No more than six credit hours in project-based courses or thesis work;
11. At least six hours in Optimization;
12. At least nine hours from Production Systems and Manufacturing, or Infrastructure and Construction Management;
13. At least 3 hours from Finance and Economics.

The remaining courses may be taken from any of the following concentration areas:
14. Optimization;
15. Production Systems and Manufacturing;
16. Infrastructure and Construction Management;
17. Finance and Economics;
18. Software.

TRANSFER OF CREDITS

B.E. holders can transfer up to six credits from their B.E. degree, provided that the student has scored at least a grade of B on each of these courses. Transfer of credits is governed by the graduate program rules and regulations.

COURSE LISTING BY CONCENTRATION AREAS

Courses eligible for graduate credit under this program are grouped into five concentration areas (CA):
CA 1: Optimization

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE700</td>
<td>Advanced Statistics</td>
<td>3</td>
</tr>
<tr>
<td>INE701</td>
<td>Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>INE702</td>
<td>Integer Programming</td>
<td>3</td>
</tr>
<tr>
<td>INE703</td>
<td>Dynamic Programming</td>
<td>3</td>
</tr>
<tr>
<td>INE704</td>
<td>Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>INE705</td>
<td>Non-Linear Programming</td>
<td>3</td>
</tr>
<tr>
<td>INE706</td>
<td>Decision Analysis</td>
<td>3</td>
</tr>
<tr>
<td>INE707</td>
<td>Network Flow</td>
<td>3</td>
</tr>
<tr>
<td>INE708</td>
<td>Queueing Theory and Applications</td>
<td>3</td>
</tr>
<tr>
<td>INE709</td>
<td>Advanced Stochastic Processes</td>
<td>3</td>
</tr>
<tr>
<td>INE711</td>
<td>Advanced Simulation</td>
<td>3</td>
</tr>
<tr>
<td>INE810</td>
<td>Special Topics in Optimization</td>
<td>3</td>
</tr>
</tbody>
</table>

CA 2: Production Systems and Manufacturing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INE742</td>
<td>Industrial Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>INE743</td>
<td>Reliability Evaluation of Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INE744</td>
<td>Inventory Analysis</td>
<td>3</td>
</tr>
<tr>
<td>INE745</td>
<td>Facilities Planning and Layout</td>
<td>3</td>
</tr>
<tr>
<td>INE746</td>
<td>Materials Handling</td>
<td>3</td>
</tr>
<tr>
<td>INE748</td>
<td>Machine Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>INE749</td>
<td>Transportation and Supply Chain</td>
<td>3</td>
</tr>
<tr>
<td>INE761</td>
<td>Computer Aided Design/Computer Aided</td>
<td>3</td>
</tr>
<tr>
<td>INE762</td>
<td>Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>INE763</td>
<td>Analysis of Automated Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>INE764</td>
<td>Advanced Information Technology for Industrial & Manufacturing Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INE840</td>
<td>Special Topics in Production</td>
<td>3</td>
</tr>
</tbody>
</table>

CA 3: Infrastructure and Construction Management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE761</td>
<td>Traffic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIE762</td>
<td>Transportation Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>CIE785</td>
<td>Risk and Natural Hazard Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE786</td>
<td>Highway Design and Management</td>
<td>3</td>
</tr>
<tr>
<td>CIE787</td>
<td>Concrete and Steel Construction</td>
<td>3</td>
</tr>
<tr>
<td>CIE788</td>
<td>GIS and Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>CIE790</td>
<td>Construction Methods</td>
<td>3</td>
</tr>
<tr>
<td>INE721/CIE789</td>
<td>Cost Engineering and Control</td>
<td>3</td>
</tr>
<tr>
<td>INE722/CIE782</td>
<td>Infrastructure Management</td>
<td>3</td>
</tr>
<tr>
<td>INE724/CIE784</td>
<td>Quality Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>INE727</td>
<td>Project Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>INE729</td>
<td>Project Contracting</td>
<td>3</td>
</tr>
<tr>
<td>INE820</td>
<td>Special Topics in Infrastructure & Construction Management</td>
<td>3</td>
</tr>
</tbody>
</table>

CA 4: Finance and Economics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS811</td>
<td>Business Economics</td>
<td>3</td>
</tr>
<tr>
<td>BUS821</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS836</td>
<td>Modern Portfolio Management</td>
<td>3</td>
</tr>
<tr>
<td>BUS837</td>
<td>International Business</td>
<td>3</td>
</tr>
<tr>
<td>BUS861</td>
<td>Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>INA831</td>
<td>International Political Economy</td>
<td>3</td>
</tr>
<tr>
<td>INE771</td>
<td>Financial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INE772</td>
<td>Advanced Financial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INE781</td>
<td>Engineering Economy II</td>
<td>3</td>
</tr>
<tr>
<td>INE870</td>
<td>Special Topics in Finance & Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

CA 5: Software

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE716/CSC723</td>
<td>Knowledge-Based Systems</td>
<td>3</td>
</tr>
<tr>
<td>COE717</td>
<td>Parallel Programming and Cluster</td>
<td>3</td>
</tr>
<tr>
<td>COE718/CSC450</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTIONS

INE700 Advanced Statistics [3-0, 3 cr.]
This course covers single factor experiments, randomized blocks, Latin squares, introduction to factorial designs, 2k factorial blocking and confounding, and forecasting.

INE701 Linear Programming [3-0, 3 cr.]
This course covers the formulation of linear programming problems, simplex method, and duality and sensitivity analysis.

INE702 Integer Programming [3-0, 3 cr.]
This course covers integer programming, and general search techniques.

INE703 Dynamic Programming [3-0, 3 cr.]
This is a course on the theory and practice of dynamic programming. Topics covered in Deterministic DP: Shortest path algorithms including label setting and correcting, A*, and solution setting and correcting, A*, and solution horizon approaches, with applications in resource allocation, knapsack problem, capacity expansion, equipment replacement, and traffic routing; infinite decision trees and dynamic programming networks with cycles. Topics covered in Stochastic DP are stochastic shortest path problem and Markov decision processes. Applications include asset divesture, capital budgeting, portfolio selection, inventory control, systems reliability, and maximization of expected utility with constant risk posture.

Prerequisites: INE701 Linear Programming.

INE704 Stochastic Processes [3-0, 3 cr.]
This course covers Markov decision processes, and chains stochastic processes.

INE705 Non-linear Programming [3-0, 3 cr.]
This course covers nonlinear/continuous optimization methods.

INE706 Decision Analysis [3-0, 3 cr.]
This course covers decision analysis, game theory, Bayesian decision theory, and utility theory.

INE707 Network Flow [3-0, 3 cr.]
This course covers networks, shortest/longest path, decision trees, and network flow.

INE708 Queuing Theory and Applications [3-0, 3 cr.]
This course is an introduction to congestion and related stochastic models. Topics include birth and death models, measures of performance, Little’s Law, conservation law, PASTA, work in system, service disciplines and priorities, regenerative processes, stability and stationary distributions, approximations and bounds. Examples from telecommunications, production, inventory, and computer science, are covered.

INE709 Advanced Stochastic Processes [3-0, 3 cr.]
This course is an introduction to martingales in continuous time. Brownian motion: construction, basic properties, sample paths. Stochastic integration, Ito’s rule, and applications, are discussed. The course is an introduction to stochastic differential equations and diffusion processes. Applications to financial economics: option pricing, and consumption/investment problems, are also covered.

Prerequisites: INE704 Stochastic Processes.
INE711 Advanced Simulation [3-0, 3 cr.]
This course covers an analysis of simulation data: input and output, validation and verification of system design, comparing alternative system configuration, simulation of complex systems, and case studies.

INE721 Cost Engineering and Control [3-0, 3 cr.]
This course covers cost engineering for construction organizations, projects, and operations, it also covers construction financing, break-even, profit, and cash flow analyses, capital budgeting, equipment cost, and procurement decisions. Construction, financial accounting, cost accounting, cost control systems, and databases, as well as cost indices, parametric estimates, unit price proposals, measuring work, and settling claims are also covered.
Prerequisites: INE729 Project Contracting.

INE722 Infrastructure Management [3-0, 3 cr.]
This course covers the general methods of engineering systems management, and the different types of infrastructure. The course analyzes possible financing, and engineering, solutions and alternatives, and the overall management during the life cycle of the project.

INE724 Quality Management Systems [3-0, 3 cr.]
This course is an introduction to quality management systems, ISO 9000, 14000, Total Quality Management, and the applications of QMS to the engineering, and management, of large projects, systems, and organizations.
Prerequisites: Consent of the instructor.

INE727 Project Scheduling [3-0, 3 cr.]
This course covers the basic critical path planning, and scheduling with arrow and precedence networks, introduction to resource leveling, and least cost scheduling, including time-cost tradeoff analysis and schedule control.

INE729 Project Contracting [3-0, 3 cr.]
This course covers the construction contracting for contractors, owners and engineers. The course also covers industry structure, the types of contracts and delivery systems of construction, planning, estimating, quantity takeoff and pricing, labor and equipment estimate, and the proposal preparation. Students use contract documents to prepare detailed estimates.

INE742 Quality Control I [3-0, 3 cr.]
This course covers the modeling process quality, inferences about process quality, statistical process control, types of control charts, acceptance sampling, and process capability analysis.

INE743 Reliability Evaluation of Engineering Systems [3-0, 3 cr.]
This course covers the concepts and basic background for evaluating the reliability of engineering systems. It covers network modeling and evaluation of simple and complex systems, cut-set method, tie-set method, multi-failure modes. Probability distributions in reliability evaluation and system reliability evaluation using probability distributions are discussed. Also, discrete and continuous Markov chains (reliability evaluation in repairable systems), frequency and duration techniques (concepts, applications to multi-state problems, frequency balance approach) and the Monte Carlo simulation, are covered.

INE744 Inventory Analysis [3-0, 3 cr.]
This course covers the continuous/periodic/deterministic/stochastic inventory models, Materials Requirements Planning (MRP), just-in-time production systems, assembly systems, and flexible manufacturing distribution systems.

INE745 Facilities Planning and Layout [3-0, 3 cr.]
This course covers the process product and schedule design, determining activity relationships and space requirements, mathematical layout models and computerized layout algorithms, location and assignment models, storage spaces and warehouse design, design of non-manufacturing facilities, airport design and the evaluation of alternative design.

INE746 Materials Handling [3-0, 3 cr.]
This course covers the materials handling equipment; selection and design of material handling systems, simulation, and interface with facilities layout.
INE748 Machine Scheduling [3-0, 3 cr.]
This course covers the Basic Single Machine Problem (BSMP); flow shop scheduling with setup cost (TSP); vehicle routing.
Prerequisites: INE302 Linear Programming.

INE749 Transportation and Supply Chain Systems [3-0, 3 cr.]
This course covers the topics of supply chain characterization, site location, mode selection, distribution planning, vehicle routing, demand management, replenishment management, geographic information systems, and real-time control issues.
Prerequisites: Consent of the instructor.

INE761 CAD/CAM [3-0, 3 cr.]
This course covers the use of computer-aided design software packages, including systems for computer-aided drafting, solid modeling, finite element analysis, and computer-aided manufacturing, and design projects including the fabrication of physical prototypes generated with numerically controlled machines.

INE762 Analysis of Automated Manufacturing Systems [3-0, 3 cr.]
This course covers the development of analytical stochastic models as the basis for understanding the performance, and the design/planning aspects of automated manufacturing systems. The course focuses on flow lines, job shops, and flexible manufacturing systems.

INE763 Advanced Information Technology for Industrial & Manufacturing Engineering [3-0, 3 cr.]
This course covers advanced information technology concepts, tools, and techniques, for designing, and implementing, manufacturing systems.

INE764 Time Series Control & Process Adjustment [3-0, 3 cr.]
This course covers the statistical analysis and design of process adjustment methods for quality improvement purposes. Topics include ARIMA time series models, autocorrelation and SPC, integration of SPC schemes and feedback control, identification and estimation of transfer function models, design and analysis of optimal stochastic controllers, PID and EWMA controllers, self-tuning and multivariate control.

INE771 Financial Engineering [3-0, 3 cr.]
This course is an introduction to financial models: mean-variance analysis, portfolio selection, separation theorems, capital asset pricing, arbitrage pricing, derivative security pricing, bond management, modeling, analysis, and computation of derivative securities. Applications of stochastic calculus and stochastic differential equations are covered, as well as numerical techniques: finite-difference, binomial method, and Monte Carlo simulation.
Prerequisites: INE704 Stochastic Processes.

INE772 Advanced Financial Engineering [3-0, 3 cr.]
This course is a review of basic mathematics, including renewal theory and stochastic calculus, Martingale approach to Black-Scholes formula, optimal stopping and American options, pricing of continuous and discrete exotic options, term structure models and pricing of bond options, jump diffusion models, and applications, including pricing of real and electricity options, and hedging of real options.
Prerequisites: INE709 Advanced Stochastic Processes.

INE781 Engineering Economy II [3-0, 3 cr.]
This course covers the principles of investing, including investment strategies, investment in stocks and bonds. Project risk and uncertainty with focus on break-even analysis, decision trees, and sequential investment decisions, are discussed. Capital budgeting, including the choice of minimum attractive rate of return under capital rationing, evaluation of multiple investment alternatives and capital budgeting with limited budgets are covered, as well as the Monte Carlo Simulation.

INE800 Project Course [3-0, 3 cr.]
This course is an applied design course. Design reviews and a final oral presentation with a written report are required.
Prerequisites: Consent of the instructor.
INE810 Special Topics in Optimization [3-0, 3 cr.]
This course covers topics of current interest in optimization, selected by instructor.
Prerequisites: Consent of the instructor.

INE820 Special Topics in Infrastructure & Construction Management [3-0, 3 cr.]
This course covers topics of current interest in infrastructure, and construction management, selected by instructor.
Prerequisites: Consent of the instructor.

INE840 Special Topics in Production Systems & Manufacturing [3-0, 3 cr.]
This course covers topics of current interest in production systems and manufacturing, selected by instructor.
Prerequisites: Consent of the instructor.

INE870 Special Topics in Finance & Economics [3-0, 3 cr.]
This course covers topics of current interest in finance, and economics, selected by the Instructor.
Prerequisites: Consent of the instructor.

INE899 Thesis [6-0, cr.]
This course is an independent directed study, design, research in the field of interest of the student or Instructor.

GENERAL ENGINEERING COURSES

GNE212 Engineering Mechanics [3-0, 3 cr.]
This course covers the review of vector algebra, forces systems resultants, equilibrium of particles and rigid bodies, internal forces, kinematics and kinetics of particles, systems of particles and rigid bodies.
Prerequisites: Sophomore Standing

GNE301 Professional Communication [2-0, 2 cr.]
This course covers the English language proficiency, business letter writing, memo writing, report presentation and writing and the use of presentation software.
Prerequisites: ENG202 Sophomore Rhetoric.

GNE305 Professional Ethics [1-0, 1 cr.]
Introduce the fundamental canon of ethics in engineering practices and the associated professional liabilities. Reinforce the importance of safety as it relates to engineering design and implementation. The course involves teamwork researching a situation related to professional and ethical responsibilities.
Prerequisites: Third-year standing.

GNE331 Probability and Statistics [3-0, 3 cr.]
This course covers set theory, probability axioms, random variables (RV), continuous and discrete probability density functions, distributions, operations on RV’s, sampling distributions, confidence intervals (single variable), hypothesis testing (single variable), linear regression (single variable), and nonlinear regression.
Prerequisites: MTH201 Calculus III.

GNE333 Engineering Analysis I [3-0, 3 cr.]
This course covers vector spaces, matrix algebra, solution of linear systems with numerical applications, eigenvalues and eigenvectors and applications, nonlinear equations and systems with numerical solutions and numerical integration.
Prerequisites: MTH201 Calculus III.